12/4/12 Flume 1.3.0 User Guide — Apache Flume documentation

Flume 1.3.0 User Guide

Introduction

Overview

Apache Flume is a distributed, reliable, and available system for efficiently collecting, aggregating and moving large amounts of log data from many
different sources to a centralized data store.

Apache Flume is a top level project at the Apache Software Foundation. There are currently two release code lines available, versions 0.9.x and 1.x.
This documentation applies to the 1.x codeline. Please click here for the Flume 0.9.x User Guide.

System Requirements

TBD
Architecture

Data flow model

A Flume event is defined as a unit of data flow having a byte payload and an optional set of string attributes. A Flume agent is a (JVM) process that hosts
the components through which events flow from an external source to the next destination (hop).

eb
Server -

Agent

A Flume source consumes events delivered to it by an external source like a web server. The external source sends events to Flume in a format that is
recognized by the target Flume source. For example, an Avro Flume source can be used to receive Avro events from Avro clients or other Flume agents
in the flow that send events from an Avro sink. When a Flume source receives an event, it stores it into one or more channels. The channel is a passive
store that keeps the event until it's consumed by a Flume sink. The file channel is one example — it is backed by the local filesystem. The sink removes
the event from the channel and puts it into an external repository like HDFS (via Flume HDFS sink) or forwards it to the Flume source of the next Flume
agent (next hop) in the flow. The source and sink within the given agent run asynchronously with the events staged in the channel.

Complex flows

Flume allows a user to build multi-hop flows where events travel through multiple agents before reaching the final destination. It also allows fan-in and
fan-out flows, contextual routing and backup routes (fail-over) for failed hops.

Reliability
The events are staged in a channel on each agent. The events are then delivered to the next agent or terminal repository (like HDFS) in the flow. The
events are removed from a channel only after they are stored in the channel of next agent or in the terminal repository. This is a how the single-hop
message delivery semantics in Flume provide end-to-end reliability of the flow.
Flume uses a transactional approach to guarantee the reliable delivery of the events. The sources and sinks encapsulate in a transaction the
storagef/retrieval, respectively, of the events placed in or provided by a transaction provided by the channel. This ensures that the set of events are

reliably passed from point to point in the flow. In the case of a multi-hop flow, the sink from the previous hop and the source from the next hop both have
their transactions running to ensure that the data is safely stored in the channel of the next hop.

Recoverability

The events are staged in the channel, which manages recovery from failure. Flume supports a durable file channel which is backed by the local file
system. There’s also a memory channel which simply stores the events in an in-memory queue, which is faster but any events still left in the memory
channel when an agent process dies can’t be recovered.

Setup
Setting up an agent

file:///Users/noland/workspaces/flume-apache-trunk-golden/flume/target/site/FlumeUserGuide.html 1/27

http://archive.cloudera.com/cdh/3/flume/UserGuide/

12/4/12 Flume 1.3.0 User Guide — Apache Flume documentation

Flume agent configuration is stored in a local configuration file. This is a text file which has a format follows the Java properties file format.
Configurations for one or more agents can be specified in the same configuration file. The configuration file includes properties of each source, sink and
channel in an agent and how they are wired together to form data flows.

Configuring individual components

Each component (source, sink or channel) in the flow has a name, type, and set of properties that are specific to the type and instantiation. For example,
an Avro source needs a hostname (or IP address) and a port number to receive data from. A memory channel can have max queue size (“capacity”), and
an HDFS sink needs to know the file system URI, path to create files, frequency of file rotation (“hdfs.rollinterval”) etc. All such attributes of a component
needs to be set in the properties file of the hosting Flume agent.

Wiring the pieces together

The agent needs to know what individual components to load and how they are connected in order to constitute the flow. This is done by listing the
names of each of the sources, sinks and channels in the agent, and then specifying the connecting channel for each sink and source. For example, an
agent flows events from an Avro source called avroWeb to HDFS sink hdfs-cluster1 via a file channel called file-channel. The configuration file will
contain names of these components and file-channel as a shared channel for both avroWeb source and hdfs-cluster1 sink.

Starting an agent

An agent is started using a shell script called flume-ng which is located in the bin directory of the Flume distribution. You need to specify the agent name,
the config directory, and the config file on the command line:

$ bin/flume-ng agent -n $agent_name -c conf -f conf/flume-conf.properties.template

Now the agent will start running source and sinks configured in the given properties file.

A simple example

Here, we give an example configuration file, describing a single-node Flume deployment. This configuration lets a user generate events and
subsequently logs them to the console.

example.conf: A single-node Flume configuration

Name the components on this agent
al.sources = rl

al.sinks = kil

al.channels = cl

Describe/configure the source

al.sources.rl.type = netcat
al.sources.rl.bind = localhost
al.sources.rl.port = 44444

Describe the sink
al.sinks.kl.type = logger

Use a channel which buffers events in memory
al.channels.cl.type = memory
al.channels.cl.capacity = 1000
al.channels.cl.transactionCapacity = 100

Bind the source and sink to the channel
al.sources.rl.channels = cl
al.sinks.kl.channel = cl

This configuration defines a single agent named a1. a1 has a source that listens for data on port 44444, a channel that buffers event data in memory, and
a sink that logs event data to the console. The configuration file names the various components, then describes their types and configuration parameters.

A given configuration file might define several named agents; when a given Flume process is launched a flag is passed telling it which named agent to
manifest.

Given this configuration file, we can start Flume as follows:
$ bin/flume-ng agent --conf-file example.conf --name al -Dflume.root.logger=INFO,console

Note that in a full deployment we would typically include one more option: --conf=<conf-dir>. The <conf-dir> directory would include a shell script flume-

env.sh and potentially a log4j properties file. In this example, we pass a Java option to force Flume to log to the console and we go without a custom
environment script.

From a separate terminal, we can then telnet port 44444 and send Flume an event:

$ telnet localhost 44444

Trying 127.0.0.1...

Connected to localhost.localdomain (127.0.0.1).
Escape character is '"]'.

Hello world! <ENTER>

OK

The original Flume terminal will output the event in a log message.

file:///Users/noland/workspaces/flume-apache-trunk-golden/flume/target/site/FlumeUserGuide.html 2/27

12/4/12 Flume 1.3.0 User Guide — Apache Flume documentation

12/06/19 15:32:19 INFO source.NetcatSource: Source starting
12/06/19 15:32:19 INFO source.NetcatSource: Created serverSocket:sun.nio.ch.ServerSocketChannelImpl[/127.0.0.1:44444]
12/06/19 15:32:34 INFO sink.LoggerSink: Event: { headers:{} body: 48 65 6C 6C 6F 20 77 6F 72 6C 64 21 0D Hello world!. }

Congratulations - you’ve successfully configured and deployed a Flume agent! Subsequent sections cover agent configuration in much more detail.

Data ingestion

Flume supports a number of mechanisms to ingest data from external sources.

RPC
An Avro client included in the Flume distribution can send a given file to Flume Avro source using avro RPC mechanism:
$ bin/flume-ng avro-client -H localhost -p 41414 -F /usr/logs/log.1l0

The above command will send the contents of /usrlogs/log.10 to to the Flume source listening on that ports.

Executing commands

There’s an exec source that executes a given command and consumes the output. A single ‘line’ of output ie. text followed by carriage return (') or line
feed (\n’) or both together.

Note: Flume does not support tail as a source. One can wrap the tail command in an exec source to stream the file.

Network streams
Flume supports the following mechanisms to read data from popular log stream types, such as:
1. Avro

2. Syslog
3. Netcat

Setting multi-agent flow

Source
foo
foo

Abent
foo

Channel
bar

In order to flow the data across multiple agents or hops, the sink of the previous agent and source of the current hop need to be avro type with the sink
pointing to the hostname (or IP address) and port of the source.

bar

Consolidation

A very common scenario in log collection is a large number of log producing clients sending data to a few consumer agents that are attached to the
storage subsystem. For examples, logs collected from hundreds of web servers sent to a dozen of agents that write to HDFS cluster.

Wab
Sarv

Consolidation

AV Avra
Sourca Sink
channel
gentd

Agent3

file:///Users/noland/workspaces/flume-apache-trunk-golden/flume/target/site/FlumeUserGuide.html 3/27

12/4/12 Flume 1.3.0 User Guide — Apache Flume documentation

This can be achieved in Flume by configuring a number of first tier agents with an avro sink, all pointing to an avro source of single agent. This source on
the second tier agent consolidates the received events into a single channel which is consumed by a sink to its final destination.

Multiplexing the flow

Flume supports multiplexing the event flow to one or more destinations. This is achieved by defining a flow multiplexer that can replicate or selectively
route an event to one or more channels.

Camm TG
Comma (OG>

=
Agent
foo

Agent
bar

The above example shows a source from agent “foo” fanning out the flow to three different channels. This fan out can be replicating or multiplexing. In
case of replicating flow, each event is sent to all three channels. For the multiplexing case, an event is delivered to a subset of available channels when
an event’s attribute matches a preconfigured value. For example, if an event attribute called “xnType” is set to “customer”, then it should go to channel1
and channel3, if it's “vendor” then it should go to channel2, otherwise channel3. The mapping can be set in the agent’s configuration file.

Configuration

As mentioned in the earlier section, Flume agent configuration is read from a file that resembles a Java property file format with hierarchical property
settings.

Defining the flow

To define the flow within a single agent, you need to link the sources and sinks via a channel. You need to list the sources, sinks and channels for the
given agent, and then point the source and sink to a channel. A source instance can specify multiple channels, but a sink instance can only specify on
channel. The format is as follows:

list the sources, sinks and channels for the agent
<Agent>.sources = <Source>

<Agent>.sinks = <Sink>

<Agent>.channels = <Channell> <Channel2>

set channel for source
<Agent>.sources.<Source>.channels = <Channell> <Channel2> ...

set channel for sink
<Agent>.sinks.<Sink>.channel = <Channell>

For example an agent named agent_foo is reading data from an external avro client and sending it to HDFS via a memory channel. The config file
weblog.config could look like:

list the sources, sinks and channels for the agent
agent_ foo.sources = avro-appserver-src-1
agent_foo.sinks = hdfs-sink-1

agent_foo.channels = mem-channel-1

set channel for source
agent_foo.sources.avro-appserver-src-1l.channels = mem-channel-1

set channel for sink
agent_foo.sinks.hdfs-sink-1.channel = mem-channel-1

This will make the events flow from avro-AppSrv-source to hdfs-Cluster1-sink through the memory channel mem-channel-1. When the agent is started
with the weblog.config as its config file, it will instantiate that flow.

Configuring individual components

After defining the flow, you need to set properties of each source, sink and channel. This is done in the same hierarchical namespace fashion where you
set the component type and other values for the properties specific to each component:

file:///Users/noland/workspaces/flume-apache-trunk-golden/flume/target/site/FlumeUserGuide.html

4/27

12/4/12 Flume 1.3.0 User Guide — Apache Flume documentation

properties for sources
<Agent>.sources.<Source>.<someProperty> = <someValue>

properties for channels
<Agent>.channel.<Channel>.<someProperty> = <someValue>

properties for sinks
<Agent>.sources.<Sink>.<someProperty> = <someValue>

The property “type” needs to be set for each component for Flume to understand what kind of object it needs to be. Each source, sink and channel type
has its own set of properties required for it to function as intended. All those need to be set as needed. In the previous example, we have a flow from
avro-AppSrv-source to hdfs-Cluster1-sink through the memory channel mem-channel-1. Here’s an example that shows configuration of each of those

components:

agent_foo.sources = avro-AppSrv-source
agent_foo.sinks = hdfs-Clusterl-sink
agent_foo.channels = mem-channel-1

set channel for sources, sinks

properties of avro-AppSrv-source
agent_foo.sources.avro-AppSrv-source.type = avro
agent_foo.sources.avro-AppSrv-source.bind = localhost
agent_foo.sources.avro-AppSrv-source.port = 10000

properties of mem-channel-1I
agent_foo.channels.mem-channel-1.type = memory
agent_foo.channels.mem-channel-1l.capacity = 1000
agent_foo.channels.mem-channel-1.transactionCapacity = 100

properties of hdfs-Clusterl-sink
agent_foo.sinks.hdfs-Clusterl-sink.type = hdfs

agent_foo.sinks.hdfs-Clusterl-sink.hdfs.path = hdfs://namenode/flume/webdata

#oun

Adding multiple flows in an agent

A single Flume agent can contain several independent flows. You can list multiple sources, sinks and channels in a config. These components can be

linked to form multiple flows:

list the sources, sinks and channels for the agent
<Agent>.sources = <Sourcel> <Source2>

<Agent>.sinks = <Sinkl> <Sink2>

<Agent>.channels = <Channell> <Channel2>

Then you can link the sources and sinks to their corresponding channels (for sources) of channel (for sinks) to setup two different flows. For example, if
you need to setup two flows in an agent, one going from an external avro client to external HDFS and another from output of a tail to avro sink, then

here’s a config to do that:

list the sources, sinks and channels in the agent
agent_foo.sources = avro-AppSrv-sourcel exec-tail-source2
agent_foo.sinks = hdfs-Clusterl-sinkl avro-forward-sink2
agent_ foo.channels = mem-channel-1 file-channel-2

flow #1 configuration
agent_foo.sources.avro-AppSrv-sourcel.channels = mem-channel-1
agent_foo.sinks.hdfs-Clusterl-sinkl.channel = mem-channel-1

flow #2 configuration

agent_foo.sources.exec-tail-source2.channels = file-channel-2
agent_foo.sinks.avro-forward-sink2.channel = file-channel-2

Configuring a multi agent flow

To setup a multi-tier flow, you need to have an avro sink of first hop pointing to avro source of the next hop. This will result in the first Flume agent
forwarding events to the next Flume agent. For example, if you are periodically sending files (1 file per event) using avro client to a local Flume agent,
then this local agent can forward it to another agent that has the mounted for storage.

Weblog agent config:

list sources, sinks and channels in the agent
agent_foo.sources = avro-AppSrv-source
agent_foo.sinks = avro-forward-sink
agent_foo.channels = file-channel

define the flow
agent_foo.sources.avro-AppSrv-source.channels = file-channel
agent_foo.sinks.avro-forward-sink.channel = file-channel

avro sink properties
agent_foo.sources.avro-forward-sink.type = avro
agent_foo.sources.avro-forward-sink.hostname = 10.1.1.100
agent_foo.sources.avro-forward-sink.port = 10000

configure other pieces

file:///Users/noland/workspaces/flume-apache-trunk-golden/flume/target/site/FlumeUserGuide.html

5/27

12/4/12 Flume 1.3.0 User Guide — Apache Flume documentation
#eun

HDFS agent config:

list sources, sinks and channels in the agent
agent_foo.sources = avro-collection-source
agent_foo.sinks = hdfs-sink

agent_foo.channels = mem-channel

define the flow
agent_foo.sources.avro-collection-source.channels = mem-channel
agent_foo.sinks.hdfs-sink.channel = mem-channel

avro sink properties
agent_foo.sources.avro-collection-source.type = avro
agent_foo.sources.avro-collection-source.bind = 10.1.1.100
agent_foo.sources.avro-collection-source.port = 10000

configure other pieces
#.o..

Here we link the avro-forward-sink from the weblog agent to the avro-collection-source of the hdfs agent. This will result in the events coming from the
external appserver source eventually getting stored in HDFS.

Fan out flow

As discussed in previous section, Flume support fanning out the flow from one source to multiple channels. There are two modes of fan out, replicating
and multiplexing. In the replicating flow the event is sent to all the configured channels. In case of multiplexing, the event is sent to only a subset of
qualifying channels. To fan out the flow, one needs to specify a list of channels for a source and the policy for the fanning it out. This is done by adding a
channel “selector” that can be replicating or multiplexing. Then further specify the selection rules if it's a multiplexer. If you don’t specify an selector, then
by defaultit’s replicating:

List the sources, sinks and channels for the agent
<Agent>.sources = <Sourcel>

<Agent>.sinks = <Sinkl> <Sink2>

<Agent>.channels = <Channell> <Channel2>

set list of channels for source (separated by space)
<Agent>.sources.<Sourcel>.channels = <Channell> <Channel2>

set channel for sinks
<Agent>.sinks.<Sinkl>.channel = <Channell>
<Agent>.sinks.<Sink2>.channel = <Channel2>

<Agent>.sources.<Sourcel>.selector.type = replicating

The multiplexing select has a further set of properties to bifurcate the flow. This requires specifying a mapping of an event attribute to a set for channel.
The selector checks for each configured attribute in the event header. If it matches the specified value, then that event is sent to all the channels mapped
to that value. If there’s no match, then the event is sent to set of channels configured as default:

Mapping for multiplexing selector
<Agent>.sources.<Sourcel>.selector.type = multiplexing
<Agent>.sources.<Sourcel>.selector.header = <someHeader>
<Agent>.sources.<Sourcel>.selector.mapping.<Valuel> = <Channell>
<Agent>.sources.<Sourcel>.selector.mapping.<Value2> = <Channell> <Channel2>
<Agent>.sources.<Sourcel>.selector.mapping.<Value3> = <Channel2>

#ouo

<Agent>.sources.<Sourcel>.selector.default = <Channel2>

The mapping allows overlapping the channels for each value. The default must be set for a multiplexing select which can also contain any number of
channels.

The following example has a single flow that multiplexed to two paths. The agent named agent_foo has a single avro source and two channels linked to
two sinks:

list the sources, sinks and channels in the agent
agent_foo.sources = avro-AppSrv-sourcel

agent_foo.sinks = hdfs-Clusterl-sinkl avro-forward-sink2
agent_foo.channels = mem-channel-1 file-channel-2

set channels for source
agent_foo.sources.avro-AppSrv-sourcel.channels = mem-channel-1 file-channel-2

set channel for sinks
agent_foo.sinks.hdfs-Clusterl-sinkl.channel = mem-channel-1
agent_foo.sinks.avro-forward-sink2.channel = file-channel-2

channel selector configuration

agent_foo.sources.avro-AppSrv-sourcel.selector.type = multiplexing
agent_foo.sources.avro-AppSrv-sourcel.selector.header = State
agent_foo.sources.avro-AppSrv-sourcel.selector.mapping.CA = mem-channel-1
agent_foo.sources.avro-AppSrv-sourcel.selector.mapping.Az = file-channel-2
agent_foo.sources.avro-AppSrv-sourcel.selector.mapping.NY = mem-channel-1 file-channel-2
agent_foo.sources.avro-AppSrv-sourcel.selector.default = mem-channel-1

file:///Users/noland/workspaces/flume-apache-trunk-golden/flume/target/site/FlumeUserGuide.html

6/27

12/4/12 Flume 1.3.0 User Guide — Apache Flume documentation

The selector checks for a header called “State”. If the value is “CA” then its sent to mem-channel-1, if its “AZ” then it goes to file-channel-2 or if its “NY”
then both. If the “State” header is not set or doesn’t match any of the three, then it goes to mem-channel-1 which is designated as ‘default’.

The selector also supports optional channels. To specify optional channels for a header, the config parameter ‘optional’ is used in the following way:

channel selector configuration

agent_ foo.sources.avro-AppSrv-sourcel.selector.type = multiplexing
agent_foo.sources.avro-AppSrv-sourcel.selector.header = State
agent_foo.sources.avro-AppSrv-sourcel.selector.mapping.CA = mem-channel-1
agent_foo.sources.avro-AppSrv-sourcel.selector.mapping.Az file-channel-2
agent_foo.sources.avro-AppSrv-sourcel.selector.mapping.NY mem-channel-1 file-channel-2
agent_foo.sources.avro-AppSrv-sourcel.selector.optional.CA = mem-channel-1 file-channel-2
agent_foo.sources.avro-AppSrv-sourcel.selector.mapping.Az = file-channel-2
agent_foo.sources.avro-AppSrv-sourcel.selector.default = mem-channel-1

The selector will attempt to write to the required channels first and will fail the transaction if even one of these channels fails to consume the events. The
transaction is reattempted on all of the channels. Once all required channels have consumed the events, then the selector will attempt to write to the
optional channels. A failure by any of the optional channels to consume the event is simply ignored and not retried.

If there is an overlap between the optional channels and required channels for a specific header, the channel is considered to be required, and a failure
in the channel will cause the entire set of required channels to be retried. For instance, in the above example, for the header “CA” mem-channel-1 is
considered to be a required channel even though it is marked both as required and optional, and a failure to write to this channel will cause that event to
be retried on all channels configured for the selector.

Note that if a header does not have any required channels, then the event will be written to the default channels and will be attempted to be written to the

optional channels for that header. Specifying optional channels will still cause the event to be written to the default channels, if no required channels are
specified.

Flume Sources

Avro Source

Listens on Avro port and receives events from external Avro client streams. When paired with the built-in AvroSink on another (previous hop) Flume
agent, it can create tiered collection topologies. Required properties are in bold.

Property Name Default Description

channels —

type - The component type name, needs to be avro
bind - hostname or IP address to listen on

port - Port # to bind to

threads — Maximum number of worker threads to spawn
selector.type

selector.”

interceptors - Space separated list of interceptors

interceptors.*

Example for agent named at:

al.sources = rl
al.channels = cl
al.sources.rl.type = avro

al.sources.rl.channels = cl
al.sources.rl.bind = 0.0.0.0
al.sources.rl.port 4141

Exec Source

Exec source runs a given Unix command on start-up and expects that process to continuously produce data on standard out (stderr is simply discarded,
unless property logStdErr is set to true). If the process exits for any reason, the source also exits and will produce no further data. This means
configurations such as cat [named pipe] OF tail -F [file] are going to produce the desired results where as date will probably not - the former two
commands produce streams of data where as the latter produces a single event and exits.

Required properties are in bold.

Property Name Default Description

channels -

type - The component type name, needs to be exec

command - The command to execute

restartThrottle 10000 Amount of time (in millis) to wait before attempting a restart
restart false Whether the executed cmd should be restarted if it dies
logStdErr false Whether the command’s stderr should be logged
batchSize 20 The max number of lines to read and send to the channel at a time
selector.type replicating replicating or multiplexing

selector.” Depends on the selector.type value

interceptors - Space separated list of interceptors

interceptors.”
file:///Users/noland/workspaces/flume-apache-trunk-golden/flume/target/site/FlumeUserGuide.html 7/27

12/4/12 Flume 1.3.0 User Guide — Apache Flume documentation

Warning: The problem with ExecSource and other asynchronous sources is that the source can not guarantee that if there is a failure to put the
event into the Channel the client knows about it. In such cases, the data will be lost. As a for instance, one of the most commonly requested features is
the tai1 -r [file]-like use case where an application writes to a log file on disk and Flume tails the file, sending each line as an event. While this is
possible, there’s an obvious problem; what happens if the channel fills up and Flume can’t send an event? Flume has no way of indicating to the
application writing the log file that it needs to retain the log or that the event hasn’t been sent, for some reason. If this doesn’t make sense, you need
only know this: Your application can never guarantee data has been received when using a unidirectional asynchronous interface such as
ExecSource! As an extension of this warning - and to be completely clear - there is absolutely zero guarantee of event delivery when using this
source. For stronger reliability guarantees, consider the Spooling Directory Source or direct integration with Flume via the SDK.

Note: You can use ExecSource to emulate TailSource from Flume 0.9x (flume og). Just use unix command tail -F /full/path/to/your/file.
Parameter -F is better in this case than -f as it will also follow file rotation.

Example for agent named at:

al.sources = rl
al.channels = cl
al.sources.rl.type = exec

al.sources.rl.command = tail -F /var/log/secure
al.sources.rl.channels = cl

Spooling Directory Source

This source lets you ingest data by dropping files in a spooling directory on disk. Unlike other asynchronous sources, this source avoids data loss
even if Flume is restarted or fails. Flume will watch the directory for new files and read then ingest them as they appear. After a given file has been
fully read into the channel, it is renamed to indicate completion. This allows a cleaner process to remove completed files periodically. Note, however,
that events may be duplicated if failures occur, consistent with the semantics offered by other Flume components. The channel optionally inserts the full
path of the origin file into a header field of each event. This source buffers file data in memory during reads; be sure to set the bufferMaxLineLength
option to a number greater than the longest line you expect to see in your input data.

Warning: This channel expects that only immutable, uniquely named files are dropped in the spooling directory. If duplicate names are used, or files
are modified while being read, the source will fail with an error message. For some use cases this may require adding unique identifiers (such as a
timestamp) to log file names when they are copied into the spooling directory.

Property Name Default Description

channels -

type - The component type name, needs to be spooldir
spoolDir - The directory where log files will be spooled
fileSuffix .COMPLETED Suffix to append to completely ingested files
fileHeader false Whether to add a header storing the filename
fileHeaderKey file Header key to use when appending filename to header
batchSize 10 Granularity at which to batch transfer to the channel
bufferMaxLines 100 Maximum number of lines the commit buffer can hold
bufferMaxLineLength 5000 Maximum length of a line in the commit buffer
selector.type replicating replicating or multiplexing

selector.” Depends on the selector.type value

interceptors - Space separated list of interceptors

interceptors.*
Example for agent named at:

al.sources = rl

al.channels = cl

al.sources.rl.type = spooldir
al.sources.rl.spoolDir = /var/log/apache/flumeSpool
al.sources.rl.fileHeader = true
al.sources.rl.channels = cl

NetCat Source

A netcat-like source that listens on a given port and turns each line of text into an event. Acts like nc -k -1 [host] [port]. In other words, it opens a
specified port and listens for data. The expectation is that the supplied data is newline separated text. Each line of text is turned into a Flume event and
sent via the connected channel.

Required properties are in bold.

Property Name Default Description

channels -

type - The component type hame, needs to be netcat
bind - Host name or IP address to bind to

port - Port # to bind to

max-line-length 512 Max line length per event body (in bytes)
ack-every-event true Respond with an “OK” for every event received

file:///Users/noland/workspaces/flume-apache-trunk-golden/flume/target/site/FlumeUserGuide.html

8/27

12/4/12 Flume 1.3.0 User Guide — Apache Flume documentation

selector.type replicating replicating or multiplexing
selector.” Depends on the selector.type value
interceptors - Space separated list of interceptors

interceptors.*
Example for agent named at:

al.sources = rl

al.channels = cl
al.sources.rl.type = netcat
al.sources.rl.bind = 0.0.0.0
al.sources.rl.bind = 6666
al.sources.rl.channels = cl

Sequence Generator Source

A simple sequence generator that continuously generates events with a counter that starts from 0 and increments by 1. Useful mainly for testing.
Required properties are in bold.

Property Name Default Description

channels -

type - The component type name, needs to be seq
selector.type replicating or multiplexing

selector.” replicating Depends on the selector.type value
interceptors - Space separated list of interceptors
interceptors.”

batchSize 1

Example for agent named at:

al.sources = rl

al.channels = cl
al.sources.rl.type = seq
al.sources.rl.channels = cl

Syslog Sources

Reads syslog data and generate Flume events. The UDP source treats an entire message as a single event. The TCP sources create a new event for
each string of characters separated by a newline (‘'n’).

Required properties are in bold.

Syslog TCP Source

The original, tried-and-true syslog TCP source.

Property Name Default Description

channels -

type - The component type name, needs to be sysilogtcp
host - Host name or IP address to bind to

port - Port # to bind to

eventSize 2500 Maximum size of a single event line, in bytes
selector.type replicating or multiplexing

selector.” replicating Depends on the selector.type value

interceptors - Space separated list of interceptors

interceptors.”
For example, a syslog TCP source for agent named at:

al.sources = rl
al.channels = cl
al.sources.rl.type = syslogtcp
al.sources.rl.port = 5140
al.sources.rl.host = localhost
al.sources.rl.channels = cl

Multiport Syslog TCP Source

This is a newer, faster, multi-port capable version of the Syslog TCP source. Note that the ports configuration setting has replaced port. Multi-port
capability means that it can listen on many ports at once in an efficient manner. This source uses the Apache Mina library to do that. Provides support for
RFC-3164 and many common RFC-5424 formatted messages. Also provides the capability to configure the character set used on a per-port basis.

Property

Name Default Description
channels -

file:///Users/noland/workspaces/flume-apache-trunk-golden/flume/target/site/FlumeUserGuide.html 9/27

12/4/12 Flume 1.3.0 User Guide — Apache Flume documentation
type - The component type name, needs t0 be multiport_syslogtep
host - Host name or IP address to bind to.
ports - Space-separated list (one or more) of ports to bind to.
eventSize 2500 Maximum size of a single event line, in bytes.
portHeader - If specified, the port number will be stored in the header of each event using the header name specified here. This allows
for interceptors and channel selectors to customize routing logic based on the incoming port.
charset.default UTF-8 Default character set used while parsing syslog events into strings.
charset.port. - Character set is configurable on a per-port basis.
<port>
batchSize 100 Maximum number of events to attempt to process per request loop. Using the default is usually fine.
readBufferSize 1024 Size of the internal Mina read buffer. Provided for performance tuning. Using the default is usually fine.
numProcessors (auto- Number of processors available on the system for use while processing messages. Default is to auto-detect # of CPUs

detected) using the Java Runtime API. Mina will spawn 2 request-processing threads per detected CPU, which is often

reasonable.

selector.type

selector.”
interceptors

replicating

replicating, multiplexing, or custom
Depends on the selector.type vValue
Space separated list of interceptors.

interceptors.*

For example, a multiport syslog TCP source for agent named ai:

al.sources = rl

al.channels = cl

al.sources.rl.type = multiport_syslogtcp
al.sources.rl.channels = cl
al.sources.rl.host = 0.0.0.0
al.sources.rl.ports = 10001 10002 10003
al.sources.rl.portHeader = port

Syslog UDP Source

Property Name Default Description
channels -
type -

host - Host name or IP address to bind to
port - Port # to bind to

selector.type replicating or multiplexing
selector.” replicating Depends on the selector.type value
interceptors - Space separated list of interceptors

interceptors.”

For example, a syslog UDP source for agent named a1:

al.sources = rl
al.channels = cl
al.sources.rl.type = syslogudp
al.sources.rl.port = 5140
al.sources.rl.host = localhost
al.sources.rl.channels = cl

HTTP Source

The component type name, needs to be sysiogudp

A source which accepts Flume Events by HTTP POST and GET. GET should be used for experimentation only. HTTP requests are converted into flume
events by a pluggable “handler” which must implement the HTTPSourceHandler interface. This handler takes a HitpServletRequest and returns a list of

flume events. All events handler from one Http request are committed to the channel in one transaction, thus allowing for increased efficiency on

channels like the file channel. If the handler throws an exception this source will return a HTTP status of 400. If the channel is full, or the source is unable
to append events to the channel, the source will return a HTTP 503 - Temporarily unavailable status.

All events sent in one post request are considered to be one batch and inserted into the channel in one transaction.

Property

Name Default

type

port -

handler org.apache.flume.http.JSONHandler
handler.” -

selector.type replicating

selector.”

interceptors -

interceptors.”

For example, a http source for agent named a1:

al.sources = rl
al.channels = cl

al.sources.rl.type = org.apache.flume.source.http.HTTPSource

Description

The FQCN of this class: org.apache. flume.source.http.HTTPSource
The port the source should bind to.

The FQCN of the handler class.

Config parameters for the handler

replicating or multiplexing

Depends on the selector.type value

Space separated list of interceptors

file:///Users/noland/workspaces/flume-apache-trunk-golden/flume/target/site/FlumeUserGuide.html

10/27

12/4/12 Flume 1.3.0 User Guide — Apache Flume documentation

al.sources.rl.port = 5140

al.sources.rl.channels = cl

al.sources.rl.handler = org.example.rest.RestHandler
al.sources.rl.handler.nickname = random props

JSONHandler

A handler is provided out of the box which can handle events represented in JSON format, and supports UTF-8, UTF-16 and UTF-32 character sets. The
handler accepts an array of events (even if there is only one event, the event has to be sent in an array) and converts them to a Flume event based on
the encoding specified in the request. If no encoding is specified, UTF-8 is assumed. The JSON handler supports UTF-8, UTF-16 and UTF-32. Events
are represented as follows.

{

"headers" : {
"timestamp" : "434324343",
"host" : "random host.example.com"
Y

"body" : "random_body"

I

{

"headers" : {
"namenode" : "namenode.example.com",
"datanode" : "random datanode.example.com"
Y

"body" : "really random_body"

H
To set the charset, the request must have content type specified as application/json; charset=urr-8 (replace UTF-8 with UTF-16 or UTF-32 as required).

One way to create an event in the format expected by this handler, is to use JSONEvent provided in the Flume SDK and use Google Gson to create the
JSON string using the Gson#fromJson(Object, Type) method. The type token to pass as the 2nd argument of this method for list of events can be created
by:

Type type = new TypeToken<List<JSONEvent>>() {}.getType();

Legacy Sources

The legacy sources allow a Flume 1.x agent to receive events from Flume 0.9.4 agents. It accepts events in the Flume 0.9.4 format, converts them to the
Flume 1.0 format, and stores them in the connected channel. The 0.9.4 event properties like timestamp, pri, host, nanos, etc get converted to 1.x event
header attributes. The legacy source supports both Avro and Thrift RPC connections. To use this bridge between two Flume versions, you need to start
a Flume 1.x agent with the avroLegacy or thriftLegacy source. The 0.9.4 agent should have the agent Sink pointing to the host/port of the 1.x agent.

Note: The reliability semantics of Flume 1.x are different from that of Flume 0.9.x. The E2E or DFO mode of a Flume 0.9.x agent will not be
supported by the legacy source. The only supported 0.9.x mode is the best effort, though the reliability setting of the 1.x flow will be applicable to the
events once they are saved into the Flume 1.x channel by the legacy source.

Required properties are in bold.

Avro Legacy Source

Property Name Default Description

channels -

type - The component type name, needs to be org.apache. flume.source.avroLegacy .AvroLegacySource
host - The hostname or IP address to bind to

port - The port # to listen on

selector.type replicating or multiplexing

selector.” replicating Depends on the selector.type value

interceptors - Space separated list of interceptors

interceptors.”
Example for agent named at:

al.sources = rl

al.channels = cl

al.sources.rl.type = org.apache.flume.source.avrolLegacy.AvroLegacySource
al.sources.rl.host = 0.0.0.0

al.sources.rl.bind = 6666

al.sources.rl.channels = cl

Thrift Legacy Source

Property Name Default Description

channels -

type - The component type name, needs to be org.apache. flume.source.thriftLegacy.ThriftLegacySource
host - The hostname or IP address to bind to

port - The port # to listen on

selector.type replicating or multiplexing

file:///Users/noland/workspaces/flume-apache-trunk-golden/flume/target/site/FlumeUserGuide.html 11/27

12/4/12

selector.”
interceptors
interceptors.*

replicating

Example for agent named at:

al.sources = rl

al.channels =
al.sources.rl.
al.sources.rl.
al.sources.rl.
al.sources.rl.

Custom Source

A custom source is your own implementation of the Source interface. A custom source’s class and its dependencies must be included in the agent’s
classpath when starting the Flume agent. The type of the custom source is its FQCN.

cl

type =
host =
bind =

org.apache.flume.source.thriftLegacy.ThriftLegacySource

0.0.0.0
6666

channels = cl

Property Name Default

Flume 1.3.0 User Guide — Apache Flume documentation

Depends on the selector.type value
Space separated list of interceptors

Description

channels
type

selector.type

- The component type name, needs to be your FQCN

replicating OF multiplexing

selector.” replicating Depends on the selector.type value
interceptors - Space separated list of interceptors
interceptors.”

Example for agent named a1:

al.sources = rl
al.channels = cl
al.sources.rl.type = org.example.MySource
al.sources.rl.channels = cl

Scribe Source

Scribe is another type of ingest system. To adopt existing Scribe ingest system, Flume should use ScribeSource based on Thrift with compatible
transfering protocol. The deployment of Scribe please following guide from Facebook. Required properties are in bold.

Property Name Default Description

type - The component type name, needs t0 be org.apache. flume.source.scribe.Scribesource
port 1499 Port that Scribe should be connected

workerThreads 5 Handing threads number in Thrift

selector.type

selector.”

Example for agent named at:

al.sources = rl
al.channels = cl

al.sources.rl.type

org.apache

al.sources.rl.port = 1463

al.sources.rl.workerThreads = 5
al.sources.rl.channels = cl
Flume Sinks
HDFS Sink

This sink writes events into the Hadoop Distributed File System (HDFS). It currently supports creating text and sequence files. It supports compression in

.flume.source.scribe.ScribeSource

both file types. The files can be rolled (close current file and create a new one) periodically based on the elapsed time or size of data or number of

events. It also buckets/partitions data by attributes like timestamp or machine where the event originated. The HDFS directory path may contain

formatting escape sequences that will replaced by the HDFS sink to generate a directory/file name to store the events. Using this sink requires hadoop

to be installed so that Flume can use the Hadoop jars to communicate with the HDFS cluster. Note that a version of Hadoop that supports the sync() call

is required.

The following are the escape sequences supported:

Alias
%{host}

Yot

%a
%A
%b

file:///Users/noland/workspaces/flume-apache-trunk-golden/flume/target/site/FlumeUserGuide.html

Description

Substitute value of event header named “host”. Arbitrary header names are

supported.
Unix time in milliseconds

locale’s short weekday name (Mon, Tue, ...)
locale’s full weekday name (Monday, Tuesday, ...)
locale’s short month name (Jan, Feb, ...)

12/27

12/4/12 Flume 1.3.0 User Guide — Apache Flume documentation

%B locale’s long month name (January, February, ...)
%C locale’s date and time (Thu Mar 3 23:05:25 2005)
%d day of month (01)

%D date; same as %m/%d/%y

%H hour (00..23)

%l hour (01..12)

%o day of year (001..366)

Yok hour (0..23)

%m month (01..12)
%M minute (00..59)

%op locale’s equivalent of am or pm

%S seconds since 1970-01-01 00:00:00 UTC

%S second (00..59)

%y last two digits of year (00..99)

%Y year (2010)

%z +hhmm numeric timezone (for example, -0400)

The file in use will have the name mangled to include ”.tmp” at the end. Once the file is closed, this extension is removed. This allows excluding partially
complete files in the directory. Required properties are in bold.

Note: Forall of the time related escape sequences, a header with the key “timestamp” must exist among the headers of the event. One way to add
this automatically is to use the Timestamplnterceptor.

Name Default Description

channel —

type - The component type name, needs to be nats

hdfs.path - HDFS directory path (eg hdfs://namenode/flume/webdata/)

hdfs.filePrefix FlumeData Name prefixed to files created by Flume in hdfs directory

hdfs.fileSuffix - Suffix to append to file (eg .avro - NOTE: period is not automatically added)

hdfs.rollInterval 30 Number of seconds to wait before rolling current file (O = never roll based on time interval)

hdfs.rollSize 1024 File size to trigger roll, in bytes (0: never roll based on file size)

hdfs.rollCount 10 Number of events written to file before it rolled (0 = never roll based on number of events)

hdfs.idleTimeout 0 Timeout after which inactive files get closed (0 = disable automatic closing of idle files)

hdfs.batchSize 100 number of events written to file before it is flushed to HDFS

hdfs.codeC - Compression codec. one of following : gzip, bzip2, Izo, snappy

hdfs.fileType SequenceFile File format: currently sequenceFile, Datastream OF compressedstream (1)DataStream will not compress output file
and please don’t set codeC (2)CompressedStream requires set hdfs.codeC with an available codeC

hdfs.maxOpenFiles 5000 Allow only this number of open files. If this number is exceeded, the oldest file is closed.

hdfs.writeFormat — “Text” or “Writable”

hdfs.callTimeout 10000 Number of milliseconds allowed for HDFS operations, such as open, write, flush, close. This number should
be increased if many HDFS timeout operations are occurring.

hdfs.threadsPoolSize 10 Number of threads per HDFS sink for HDFS 10 ops (open, write, etc.)

hdfs.rollTimerPoolSize 1 Number of threads per HDFS sink for scheduling timed file rolling

hdfs.kerberosPrincipal - Kerberos user principal for accessing secure HDFS

hdfs.kerberosKeytab — Kerberos keytab for accessing secure HDFS

hdfs.proxyUser

hdfs.round false Should the timestamp be rounded down (if true, affects all time based escape sequences except %t)

hdfs.roundValue 1 Rounded down to the highest multiple of this (in the unit configured using hats.roundunit), less than current
time.

hdfs.roundUnit second The unit of the round down value - second, minute OF hour.

hdfs.timeZone Local Time Name of the timezone that should be used for resolving the directory path, e.g. America/Los_Angeles.

serializer TEXT Other possible options include avro_event or the fully-qualified class name of an implementation of the

EventSerializer.Builder interface.
serializer.”

Example for agent named at:

al.channels = cl

al.sinks = kil

al.sinks.kl.type = hdfs

al.sinks.kl.channel = cl

al.sinks.kl.hdfs.path = /flume/events/%y-%m-%d/%H%M/%S
al.sinks.kl.hdfs.filePrefix = events-
al.sinks.kl.hdfs.round = true
al.sinks.kl.hdfs.roundvalue = 10
al.sinks.kl.hdfs.roundUnit = minute

The above configuration will round down the timestamp to the last 10th minute. For example, an event with timestamp 11:54:34 AM, June 12, 2012 will
cause the hdfs path to become /f1ume/events/2012-06-12/1150/00.

Logger Sink
Logs event at INFO level. Typically useful for testing/debugging purpose. Required properties are in bold.

file:///Users/noland/workspaces/flume-apache-trunk-golden/flume/target/site/FlumeUserGuide.html 13/27

12/4/12 Flume 1.3.0 User Guide — Apache Flume documentation

Property Name Default Description
channel -
type - The component type name, needs to be 1ogger

Example for agent named at:

al.channels = cl

al.sinks = kl
al.sinks.kl.type = logger
al.sinks.kl.channel = cl

Avro Sink

This sink forms one half of Flume’s tiered collection support. Flume events sent to this sink are turned into Avro events and sent to the configured
hostname / port pair. The events are taken from the configured Channel in batches of the configured batch size. Required properties are in bold.

Property Name Default Description

channel -

type - The component type name, needs to be avro.

hostname - The hostname or IP address to bind to.

port - The port # to listen on.

batch-size 100 number of event to batch together for send.

connect-timeout 20000 Amount of time (ms) to allow for the first (handshake) request.
request-timeout 20000 Amount of time (ms) to allow for requests after the first.

Example for agent named at:

al.channels = cl

al.sinks = kil

al.sinks.kl.type = avro
al.sinks.kl.channel = cl
al.sinks.kl.hostname = 10.10.10.10
al.sinks.kl.port = 4545

IRC Sink

The IRC sink takes messages from attached channel and relays those to configured IRC destinations. Required properties are in bold.

Property Name Default Description

channel -

type - The component type name, needs to be irc
hostname - The hostname or IP address to connect to
port 6667 The port number of remote host to connect
nick - Nick name

user - User name

password - User password

chan - channel

name

splitlines - (boolean)

splitchars n line separator (if you were to enter the default value into the config file, then you would need to escape the

backslash, like this: “\n”)
Example for agent named at:

al.channels = cl

al.sinks = kil

al.sinks.kl.type = irc
al.sinks.kl.channel = cl
al.sinks.kl.hostname = irc.yourdomain.com
al.sinks.kl.nick = flume

al.sinks.kl.chan = #flume

File Roll Sink

Stores events on the local filesystem. Required properties are in bold.

Property Name Default Description

channel -

type - The component type name, needs to be file roli.

sink.directory - The directory where files will be stored

sink.rollinterval 30 Roll the file every 30 seconds. Specifying 0 will disable rolling and cause all events to be written to a single file.
sink.serializer TEXT Other possible options include avro_event or the FQCN of an implementation of EventSerializer.Builder interface.
batchSize 100

Example for agent named at:

file:///Users/noland/workspaces/flume-apache-trunk-golden/flume/target/site/FlumeUserGuide.html 14/27

12/4/12 Flume 1.3.0 User Guide — Apache Flume documentation

file:///Users/noland/workspaces/flume-apache-trunk-golden/flume/target/site/FlumeUserGuide.html

al.channels = cl

al.sinks = kil

al.sinks.kl.type = file_ roll
al.sinks.kl.channel = cl
al.sinks.kl.sink.directory = /var/log/flume

Null Sink

Discards all events it receives from the channel. Required properties are in bold.

Property Name Default Description

channel -

type - The component type name, needs to be nu11.
batchSize 100

Example for agent named at:

al.channels = cl
al.sinks = kil
al.sinks.kl.type = null
al.sinks.kl.channel = cl

HBaseSinks

HBaseSink

This sink writes data to HBase. The Hbase configuration is picked up from the first hbase-site.xml encountered in the classpath. A class implementing
HbaseEventSerializer which is specified by the configuration is used to convert the events into HBase puts and/or increments. These puts and
increments are then written to HBase. This sink provides the same consistency guarantees as HBase, which is currently row-wise atomicity. In the event
of Hbase failing to write certain events, the sink will replay all events in that transaction. For convenience two serializers are provided with flume. The
SimpleHbaseEventSerializer (org.apache.flume.sink.hbase.SimpleHbaseEventSerializer) writes the event body as is to HBase, and optionally
increments a column in Hbase. This is primarily an example implementation. @The RegexHbaseEventSerializer
(org.apache.flume.sink.hbase.RegexHbaseEventSerializer) breaks the event body based on the given regex and writes each part into different columns.

The type is the FQCN: org.apache.flume.sink.hbase.HBaseSink. Required properties are in bold.

Property

Name Default Description

channel -

type - The component type name, needs to be
org.apache.flume.sink.hbase.HBaseSink

table - The name of the table in Hbase to write to.

columnFamily — The column family in Hbase to write to.

batchSize 100 Number of events to be written per txn.

serializer org.apache.flume.sink.hbase.SimpleHbaseEventSerializer

serializer.” - Properties to be passed to the serializer.

Example for agent named at:

al.channels = cl

al.sinks = kil

al.sinks.kl.type = org.apache.flume.sink.hbase.HBaseSink

al.sinks.kl.table = foo_table

al.sinks.kl.columnFamily = bar_cf

al.sinks.kl.serializer = org.apache.flume.sink.hbase.RegexHbaseEventSerializer
al.sinks.kl.channel = cl

AsyncHBaseSink

This sink writes data to HBase using an asynchronous model. A class implementing AsyncHbaseEventSerializer which is specified by the configuration
is used to convert the events into HBase puts and/or increments. These puts and increments are then written to HBase. This sink provides the same
consistency guarantees as HBase, which is currently row-wise atomicity. In the event of Hbase failing to write certain events, the sink will replay all
events in that transaction. This sink is still experimental. The type is the FQCN: org.apache.flume.sink.hbase.AsyncHBaseSink. Required properties are
in bold.

Property
Name Default Description
channel -
type - The component type name, needs to be
org.apache. flume.sink.hbase.AsyncHBaseSink
table - The name of the table in Hbase to write to.
columnFamily — The column family in Hbase to write to.
batchSize 100 Number of events to be written per txn.
timeout - The length of time (in milliseconds) the sink waits for acks from

hbase for all events in a transaction. If no timeout is specified, the
sink will wait forever.

15/27

12/4/12 Flume 1.3.0 User Guide — Apache Flume documentation

serializer org.apache.flume.sink.hbase.SimpleAsyncHbaseEventSerializer
serializer.” - Properties to be passed to the serializer.

Example for agent named at:

al.channels = cl

al.sinks = kil

al.sinks.kl.type = org.apache.flume.sink.hbase.AsyncHBaseSink

al.sinks.kl.table = foo_table

al.sinks.kl.columnFamily = bar_cf

al.sinks.kl.serializer = org.apache.flume.sink.hbase.SimpleAsyncHbaseEventSerializer
al.sinks.kl.channel = cl

ElasticSearchSink

This sink writes data to ElasticSearch. A class implementing ElasticSearchEventSerializer which is specified by the configuration is used to convert the
events into XContentBuilder which detail the fields and mappings which will be indexed. These are then then written to ElasticSearch. The sink will
generate an index per day allowing easier management instead of dealing with a single large index The type is the FQCN:
org.apache.flume.sink.elasticsearch.ElasticSearchSink Required properties are in bold.

Property

Name Default Description

channel -

type - The component type name, needs to be
org.apache.flume.sink.elasticsearch.ElasticSearchSink

hostNames - Comma separated list of hostname:port, if the port is not present
the default port ‘9300’ will be used

indexName flume The name of the index which the date will be appended to.
Example ‘flume’ -> ‘flume-yyyy-MM-dd’

indexType logs The type to index the document to, defaults to ‘log’

clusterName elasticsearch Name of the ElasticSearch cluster to connect to

batchSize 100 Number of events to be written per txn.

ttl - TTL in days, when set will cause the expired documents to be
deleted automatically, if not set documents will never be
automatically deleted

serializer org.apache.flume.sink.elasticsearch.ElasticSearchDynamicSerializer

serializer.* — Properties to be passed to the serializer.

Example for agent named at:

al.channels = cl

al.sinks = kil

al.sinks.kl.type = org.apache.flume.sink.elasticsearch.ElasticSearchSink
al.sinks.kl.hostNames 127.0.0.1:9200,127.0.0.2:9300
al.sinks.kl.indexName foo_index

al.sinks.kl.indexType bar_type

al.sinks.kl.clusterName = foobar_cluster

al.sinks.kl.batchSize = 500

al.sinks.kl.ttl =5

al.sinks.kl.serializer = org.apache.flume.sink.elasticsearch.ElasticSearchDynamicSerializer
al.sinks.kl.channel = cl

Custom Sink

A custom sink is your own implementation of the Sink interface. A custom sink’s class and its dependencies must be included in the agent’s classpath
when starting the Flume agent. The type of the custom sink is its FQCN. Required properties are in bold.

Property Name Default Description
channel -
type - The component type name, needs to be your FQCN

Example for agent named at:

al.channels = cl

al.sinks = kil

al.sinks.kl.type = org.example.MySink
al.sinks.kl.channel = cl

Flume Channels
Channels are the repositories where the events are staged on a agent. Source adds the events and Sink removes it.

Memory Channel

The events are stored in a an in-memory queue with configurable max size. It's ideal for flow that needs higher throughput and prepared to lose the
staged data in the event of a agent failures. Required properties are in bold.

file:///Users/noland/workspaces/flume-apache-trunk-golden/flume/target/site/FlumeUserGuide.html 16/27

12/4/12 Flume 1.3.0 User Guide — Apache Flume documentation

Property Name Default Description

type - The component type name, needs to be memory

capacity 100 The max number of events stored in the channel
transactionCapacity 100 The max number of events stored in the channel per transaction
keep-alive 3 Timeout in seconds for adding or removing an event

Example for agent named a1:

al.channels = cl
al.channels.cl.type = memory
al.channels.cl.capacity = 1000

JDBC Channel

The events are stored in a persistent storage that's backed by a database. The JDBC channel currently supports embedded Derby. This is a durable
channel that’s ideal for the flows where recoverability is important. Required properties are in bold.

Property Name Default Description

type - The component type hame, needs to be jdbe

db.type DERBY Database vendor, needs to be DERBY.

driver.class org.apache.derby.jdbc.EmbeddedDriver Class for vendor’s JDBC driver

driver.url (constructed from other properties) JDBC connection URL

db.username “sa” User id for db connection

db.password - password for db connection

connection.properties.file - JDBC Connection property file path

create.schema true If true, then creates db schema if not there

create.index true Create indexes to speed up lookups

create.foreignkey true

transaction.isolation “READ_COMMITTED” Isolation level for db session READ_UNCOMMITTED,
READ_COMMITTED, SERIALIZABLE, REPEATABLE_READ

maximum.connections 10 Max connections allowed to db

maximum.capacity 0 (unlimited) Max number of events in the channel

sysprop.* DB Vendor specific properties

sysprop.user.nome Home path to store embedded Derby database

Example for agent named at:

al.channels = cl
al.channels.cl.type = jdbc

Recoverable Memory Channel

Warning: The Recoverable Memory Channel has been deprecated in favor of the FileChannel. FileChannel is durable channel and performs better
than the Recoverable Memory Channel.

Required properties are in bold.

Property Name Default Description
type - The component type name, needs to be
org.apache.flume.channel.recoverable.memory.RecoverableMemoryChannel

wal.dataDir ${user.home}/.flume/recoverable-memory-

channel
wal.rollSize (0x04000000) Max size (in bytes) of a single file before we roll
wal.minRetentionPeriod 300000 Min amount of time (in millis) to keep a log
wal.workerinterval 60000 How often (in millis) the background worker checks for old logs
wal.maxLogsSize (0x20000000) Total amt (in bytes) of logs to keep, excluding the current log
capacity 100
transactionCapacity 100
keep-alive 3

File Channel

Required properties are in bold.

Property Name Default Description

type - The component type name, needs to be file.
checkpointDir ~/.flumeffile-channel/checkpoint The directory where checkpoint file will be stored

dataDirs ~/flumeffile-channel/data The directory where log files will be stored
transactionCapacity 1000 The maximum size of transaction supported by the channel
checkpointinterval 30000 Amount of time (in millis) between checkpoints
maxFileSize 2146435071 Max size (in bytes) of a single log file

capacity 1000000 Maximum capacity of the channel

file:///Users/noland/workspaces/flume-apache-trunk-golden/flume/target/site/FlumeUserGuide.html 17/27

12/4/12 Flume 1.3.0 User Guide — Apache Flume documentation

keep-alive 3 Amount of time (in sec) to wait for a put operation
write-timeout 3 Amount of time (in sec) to wait for a write operation
checkpoint-timeout 600 Expert: Amount of time (in sec) to wait for a checkpoint
use-log-replay-v1 false Expert: Use old replay logic
use-fast-replay false Expert: Replay without using queue
encryption.activeKey - Key name used to encrypt new data
encryption.cipherProvider - Cipher provider type, supported types:
AESCTRNOPADDING
encryption.keyProvider - Key provider type, supported types: JCEKSFILE
encryption.keyProvider.keyStoreFile - Path to the keystore file
encrpytion.keyProvider.keyStorePasswordFile - Path to the keystore password file
encryption.keyProvider.keys - List of all keys (e.g. history of the activeKey setting)
encyption.keyProvider.keys.*.passwordFile - Path to the optional key password file

Note: By default the File Channel uses paths for checkpoint and data directories that are within the user home as specified above. As a result if you
have more than one File Channel instances active within the agent, only one will be able to lock the directories and cause the other channel
initialization to fail. It is therefore necessary that you provide explicit paths to all the configured channels, preferably on different disks. Furthermore, as
file channel will sync to disk after every commit, coupling it with a sink/source that batches events together may be necessary to provide good
performance where multiple disks are not available for checkpoint and data directories.

Example for agent named at:

al.channels = cl

al.channels.cl.type = file
al.channels.cl.checkpointDir = /mnt/flume/checkpoint
al.channels.cl.dataDirs = /mnt/flume/data

Encryption
Below is a few sample configurations:

Generating a key with a password seperate from the key store password:

keytool -genseckey -alias key-0 -keypass keyPassword -keyalg AES \
-keysize 128 -validity 9000 -keystore test.keystore \
-storetype jceks -storepass keyStorePassword

Generating a key with the password the same as the key store password:

keytool -genseckey -alias key-1 -keyalg AES -keysize 128 -validity 9000 \
-keystore src/test/resources/test.keystore -storetype jceks \
-storepass keyStorePassword

al.channels.cl.encryption.activeKey = key-0

al.channels.cl.encryption.cipherProvider = AESCTRNOPADDING
al.channels.cl.encryption.keyProvider = key-provider-0
al.channels.cl.encryption.keyProvider = JCEKSFILE
al.channels.cl.encryption.keyProvider.keyStoreFile = /path/to/my.keystore
al.channels.cl.encryption.keyProvider.keyStorePasswordFile = /path/to/my.keystore.password
al.channels.cl.encryption.keyProvider.keys = key-0

Let’s say you have aged key-0 out and new files should be encrypted with key-1:

al.channels.cl.encryption.activeKey = key-1

al.channels.cl.encryption.cipherProvider = AESCTRNOPADDING
al.channels.cl.encryption.keyProvider = JCEKSFILE
al.channels.cl.encryption.keyProvider.keyStoreFile = /path/to/my.keystore
al.channels.cl.encryption.keyProvider.keyStorePasswordFile = /path/to/my.keystore.password
al.channels.cl.encryption.keyProvider.keys = key-0 key-1

The same scenerio as above, however key-0 has it's own password:

al.channels.cl.encryption.activeKey = key-1

al.channels.cl.encryption.cipherProvider = AESCTRNOPADDING
al.channels.cl.encryption.keyProvider = JCEKSFILE
al.channels.cl.encryption.keyProvider.keyStoreFile = /path/to/my.keystore
al.channels.cl.encryption.keyProvider.keyStorePasswordFile = /path/to/my.keystore.password
al.channels.cl.encryption.keyProvider.keys = key-0 key-1
al.channels.cl.encryption.keyProvider.keys.key-0.passwordFile = /path/to/key-0.password

Pseudo Transaction Channel

Warning: The Pseudo Transaction Channel is only for unit testing purposes and is NOT meant for production use.

Required properties are in bold.

Property Name Default Description
type - The component type name, needs to be org.apache. flume.channel . PseudoTxnMemoryChannel
capacity 50 The max number of events stored in the channel

file:///Users/noland/workspaces/flume-apache-trunk-golden/flume/target/site/FlumeUserGuide.html 18/27

12/4/12 Flume 1.3.0 User Guide — Apache Flume documentation

keep-alive 3 Timeout in seconds for adding or removing an event

Custom Channel

A custom channel is your own implementation of the Channel interface. A custom channel’s class and its dependencies must be included in the agent’s
classpath when starting the Flume agent. The type of the custom channel is its FQCN. Required properties are in bold.

Property Name Default Description
type - The component type name, needs to be a FQCN

Example for agent named a1:

al.channels = cl
al.channels.cl.type = org.example.MyChannel

Flume Channel Selectors

If the type is not specified, then defaults to “replicating”.

Replicating Channel Selector (default)
Required properties are in bold.

Property Name Default Description
selector.type replicating The component type name, needs to be replicating

Example for agent named a1 and it’s source called r1:

al.sources = rl

al.channels = cl c2 c3
al.source.rl.selector.type = replicating
al.source.rl.channels = cl c2 c3

Multiplexing Channel Selector

Required properties are in bold.

Property Name Default Description

selector.type replicating The component type name, needs to be multiplexing
selector.header flume.selector.header

selector.default -

selector.mapping.” —

Example for agent named a1 and it's source called r1:

al.sources = rl

al.channels = cl c2 c3 c4
al.sources.rl.selector.type = multiplexing
al.sources.rl.selector.header = state
al.sources.rl.selector.mapping.Cz = cl
al.sources.rl.selector.mapping.US = c2 c3
al.sources.rl.selector.default = c4

Custom Channel Selector

A custom channel selector is your own implementation of the ChannelSelector interface. A custom channel selector’s class and its dependencies must
be included in the agent’s classpath when starting the Flume agent. The type of the custom channel selector is its FQCN.

Property Name Default Description
selector.type - The component type name, needs to be your FQCN

Example for agent named a1 and it’s source called r1:

al.sources = rl
al.channels = cl
al.sources.rl.selector.type = org.example.MyChannelSelector

Flume Sink Processors

Sink groups allow users to group multiple sinks into one entity. Sink processors can be used to provide load balancing capabilities over all sinks inside
the group or to achieve fail over from one sink to another in case of temporal failure.

Required properties are in bold.
Property Name Default Description

file:///Users/noland/workspaces/flume-apache-trunk-golden/flume/target/site/FlumeUserGuide.html 19/27

12/4/12 Flume 1.3.0 User Guide — Apache Flume documentation

sinks - Space separated list of sinks that are participating in the group
processor.type default The componenttype name, needs to be default, failover OF load_balance

Example for agent named at:

al.sinkgroups = gl
al.sinkgroups.gl.sinks = k1l k2
al.sinkgroups.gl.processor.type = load_balance

Default Sink Processor

Default sink processor accepts only a single sink. User is not forced to create processor (sink group) for single sinks. Instead user can follow the source -
channel - sink pattern that was explained above in this user guide.

Failover Sink Processor

Failover Sink Processor maintains a prioritized list of sinks, guaranteeing that so long as one is available events will be processed (delivered).

The fail over mechanism works by relegating failed sinks to a pool where they are assigned a cool down period, increasing with sequential failures
before they are retried. Once a sink successfully sends an event itis restored to the live pool.

To configure, set a sink groups processor to tailover and set priorities for all individual sinks. All specified priorities must be unique. Furthermore, upper
limit to fail over time can be set (in milliseconds) using maxpenalty property.

Required properties are in bold.

Property Name Default Description

sinks - Space separated list of sinks that are participating in the group

processor.type default The component type name, needs to be failover

processor.priority.<sinkName> - <sinkName> must be one of the sink instances associated with the current sink group
processor.maxpenalty 30000 (in millis)

Example for agent named at:

al.sinkgroups = gl
al.sinkgroups.gl.sinks = k1l k2

al.sinkgroups.gl.processor.type = failover
al.sinkgroups.gl.processor.priority.kl = 5
al.sinkgroups.gl.processor.priority.k2 = 10
al.sinkgroups.gl.processor.maxpenalty = 10000

Load balancing Sink Processor

Load balancing sink processor provides the ability to load-balance flow over multiple sinks. It maintains an indexed list of active sinks on which the load
must be distributed. Implementation supports distributing load using either via round_robin Or random Selection mechanisms. The choice of selection
mechanism defaults to round_robin type, but can be overridden via configuration. Custom selection mechanisms are supported via custom classes that
inherits from abstractsinkselector.

When invoked, this selector picks the next sink using its configured selection mechanism and invokes it. FOr round_robin and random In case the selected
sink fails to deliver the event, the processor picks the next available sink via its configured selection mechanism. This implementation does not blacklist
the failing sink and instead continues to optimistically attempt every available sink. If all sinks invocations result in failure, the selector propagates the
failure to the sink runner.

If backott iS enabled, the sink processor will blacklist sinks that fail, removing them for selection for a given timeout. When the timeout ends, if the sink is
still unresponsive timeout is increased exponentially to avoid potentially getting stuck in long waits on unresponsive sinks.

Required properties are in bold.

Property Name Default Description

processor.sinks - Space separated list of sinks that are participating in the group

processor.type default The component type name, needs to be 10ad_balance

processor.backoff true Should failed sinks be backed off exponentially.

processor.selector round robin Selection mechanism. Must be either round robin, random Or FQCN of custom class that
inherits from abstractsinkselector

processor.selector.maxBackoffMillis 30000 used by backoff selectors to limit exponential backoff in miliseconds

Example for agent named at:

al.sinkgroups = gl

al.sinkgroups.gl.sinks = k1l k2
al.sinkgroups.gl.processor.type = load_balance
al.sinkgroups.gl.processor.backoff = true
al.sinkgroups.gl.processor.selector = random

Custom Sink Processor

file:///Users/noland/workspaces/flume-apache-trunk-golden/flume/target/site/FlumeUserGuide.html 20/27

12/4/12 Flume 1.3.0 User Guide — Apache Flume documentation

file:///Users/noland/workspaces/flume-apache-trunk-golden/flume/target/site/FlumeUserGuide.html

Custom sink processors are not supported at the moment.

Event Serializers

The file_ro11 sink and the nats sink both support the eventserializer interface. Details of the EventSerializers that ship with Flume are provided below.

Body Text Serializer

Alias: text. This interceptor writes the body of the event to an output stream without any transformation or modification. The event headers are ignored.
Configuration options are as follows:

Property Name Default Description

appendNewline true Whether a newline will be appended to each event at write time. The default of true assumes
that events do not contain newlines, for legacy reasons.

Example for agent named a1:

al.sinks = kil

al.sinks.kl.type = file_ roll

al.sinks.kl.channel = cl
al.sinks.kl.sink.directory = /var/log/flume
al.sinks.kl.sink.serializer = text
al.sinks.kl.sink.serializer.appendNewline = false

Avro Event Serializer

Alias: avro_event. This interceptor serializes Flume events into an Avro container file. The schema used is the same schema used for Flume events in
the Avro RPC mechanism. This serializers inherits from the abstractavroEventserializer class. Configuration options are as follows:

Property Name Default Description

syncintervalBytes 2048000 Avro sync interval, in approximate bytes.

compressionCodec null Avro compression codec. For supported codecs, see Avro’s CodecFactory
docs.

Example for agent named at:

al.sinks.kl.type = hdfs

al.sinks.kl.channel = cl

al.sinks.kl.hdfs.path = /flume/events/%y-%m-%d/%H%M/%S
al.sinks.kl.serializer = avro_event
al.sinks.kl.serializer.compressionCodec = snappy

Flume Interceptors

Flume has the capability to modify/drop events in-flight. This is done with the help of interceptors. Interceptors are classes that implement
org.apache.flume. interceptor.Interceptor interface. An interceptor can modify or even drop events based on any criteria chosen by the developer of the
interceptor. Flume supports chaining of interceptors. This is made possible through by specifying the list of interceptor builder class names in the
configuration. Interceptors are specified as a whitespace separated list in the source configuration. The order in which the interceptors are specified is
the order in which they are invoked. The list of events returned by one interceptor is passed to the next interceptor in the chain. Interceptors can modify or
drop events. If an interceptor needs to drop events, it just does not return that event in the list that it returns. If it is to drop all events, then it simply returns
an empty list. Interceptors are named components, here is an example of how they are created through configuration:

al.sources = rl

al.sinks = kil

al.channels = cl

al.sources.rl.interceptors = il i2

al.sources.rl.interceptors.il.type = org.apache.flume.interceptor.HostInterceptor$Builder
al.sources.rl.interceptors.il.preserveExisting = false
al.sources.rl.interceptors.il.hostHeader = hostname

al.sources.rl.interceptors.i2.type = org.apache.flume.interceptor.TimestampInterceptor$Builder
al.sinks.kl.filePrefix = FlumeData.%{CollectorHost}.%Y-%m-%d

al.sinks.kl.channel = cl

Note that the interceptor builders are passed to the type config parameter. The interceptors are themselves configurable and can be passed
configuration values just like they are passed to any other configurable component. In the above example, events are passed to the HostInterceptor first
and the events returned by the Hostnterceptor are then passed along to the Timestamplnterceptor. You can specify either the fully qualified class name
(FQCN) or the alias timestamp. If you have multiple collectors writing to the same HDFS path then you could also use the HostInterceptor.

Timestamp Interceptor

This interceptor inserts into the event headers, the time in millis at which it processes the event. This interceptor inserts a header with key timestamp
whose value is the relevant timestamp. This interceptor can preserve an existing timestamp if it is already present in the configuration.

Property Name Default Description
type - The component type name, has to be timestamp or the FQCN
preserveExisting false If the timestamp already exists, should it be preserved - true or false

21/27

12/4/12

Example for agent named at:

al.
al.
al.
al.
al.
al.

sources = rl

channels = cl

sources.rl.channels =
sources.rl.type = seq
sources.rl.interceptors
sources.rl.interceptors

Host Interceptor

Flume 1.3.0 User Guide — Apache Flume documentation

cl

= il
.il.type = timestamp

This interceptor inserts the hostname or IP address of the host that this agent is running on. It inserts a header with key nost or a configured key whose
value is the hostname or IP address of the host, based on configuration.

Property Name Defau
type -
preserveExisting false
uselP true
hostHeader host

Example for agent named at:

al.
al.
al.
al.
al.

sources = rl
channels = cl
sources.rl.interceptors

sources.rl.interceptors
sources.rl.interceptors

Static Interceptor

It Description
The component type name, has to be host
If the host header already exists, should it be preserved - true or false
Use the IP Address if true, else use hostname.
The header key to be used.

= il
.il.type = host
.il.hostHeader = hostname

Static interceptor allows user to append a static header with static value to all events.

The current implementation does not allow specifying multiple headers at one time. Instead user might chain multiple static interceptors each defining
one static header.

Property Name

type -
preserveExisting true
key key
value value

Example for agent named at:

al.
al.
al.
al.
al.
al.
al.
al.

sources = rl

channels = cl
sources.rl.channels =
sources.rl.type = seq
sources.rl.interceptors
sources.rl.interceptors
sources.rl.interceptors
sources.rl.interceptors

Default Description

The component type name, has to be static

If configured header already exists, should it be preserved - true or false
Name of header that should be created

Static value that should be created

cl

=il

.il.type = static
.il.key = datacenter
.il.value = NEW_YORK

Regex Filtering Interceptor

This interceptor filters events selectively by interpreting the event body as text and matching the text against a configured regular expression. The
supplied regular expression can be used to include events or exclude events.

Property Name
type

regex
excludeEvents

Default Description

- The component type name has to be regex_filter

e Regular expression for matching against events

false If true, regex determines events to exclude, otherwise regex determines events to include.

Regex Extractor Interceptor

This interceptor extracts regex match groups using a specified regular expression and appends the match groups as headers on the event. It also
supports pluggable serializers for formatting the match groups before adding them as event headers.

Property Name
type

regex
serializers

serializers.<s1>.type

Default Description

- The component type name has to be regex_extractor

- Regular expression for matching against events

- Space-separated list of serializers for mapping matches to header names and serializing their values. (See
example below) Flume provides built-in support for the following serializers:

org.apache.flume.interceptor.RegexExtractorInterceptorPassThroughSerializer
org.apache.flume.interceptor.RegexExtractorInterceptorMillisSerializer

default Mustbe cefault (org.apache.flume.interceptor.RegexExtractorinterceptorPassThroughSerializer),
org.apache.flume.interceptor.RegexExtractorInterceptorMillisSerializer, OF the FQCN of a custom class that

in1p|ernerns org.apache.flume.interceptor.RegexExtractorInterceptorSerializer

file:///Users/noland/workspaces/flume-apache-trunk-golden/flume/target/site/FlumeUserGuide.html 22/27

12/4/12 Flume 1.3.0 User Guide — Apache Flume documentation

serializers.<s1>.name -
serializers.” - Serializer-specific properties

The serializers are used to map the matches to a header name and a formatted header value, by default you only need to specify the header name and
the default org.apache.flume.interceptor.RegexExtractorInterceptorPassThroughSerializer will be used. This serializer simply maps the matches to the
specified header name and passes the value through as it was extracted by the regex. You can plug custom serializer implementations into the extractor
using the fully qualified class name (FQCN) to format the matches in anyway you like.

Example 1:

If the Flume event body contained 1:2:3.4fo00bars and the following configuration was used

agent.sources.rl.interceptors.il.regex = (\\d):(\\d):(\\d)
agent.sources.rl.interceptors.il.serializers = sl s2 s3
agent.sources.rl.interceptors.il.serializers.sl.name = one
agent.sources.rl.interceptors.il.serializers.s2.name = two
agent.sources.rl.interceptors.il.serializers.s3.name = three

The extracted event will contain the same body but the following headers will have been added one=>1, two=>2, three=>3
Example 2:
If the Flume event body contained 2012-10-18 18:47:57,614 some log line and the following configuration was used

agent.sources.rl.interceptors.il.regex = " (?:\\n)?(\\d\\d\\d\\d-\\d\\d-\\d\\d\\s\\d\\d:\\d\\d)

agent.sources.rl.interceptors.il.serializers = sl

agent.sources.rl.interceptors.il.serializers.sl.type = org.apache.flume.interceptor.RegexExtractorInterceptorMillisSerializer
agent.sources.rl.interceptors.il.serializers.sl.name = timestamp

agent.sources.rl.interceptors.il.serializers.sl.pattern = yyyy-MM-dd HH:mm

the extracted event will contain the same body but the following headers will have been added timestamp=>1350611220000

Flume Properties

Property Name Default Description
flume.called.from.service - If this property is specified then the Flume agent will continue polling for the config file even if the
config file is not found at the expected location. Otherwise, the Flume agent will terminate if the config

doesn’t exist at the expected location. No property value is needed when setting this property (eg, just
specifying -Dflume.called.from.service is enough)

Property: flume.called.from.service

Flume periodically polls, every 30 seconds, for changes to the specified config file. A Flume agent loads a new configuration from the config file if either
an existing file is polled for the first time, or if an existing file’s modification date has changed since the last time it was polled. Renaming or moving a file
does not change its modification time. When a Flume agent polls a non-existent file then one of two things happens: 1. When the agent polls a non-
existent config file for the first time, then the agent behaves according to the flume.called.from.service property. If the property is set, then the agent will
continue polling (always at the same period — every 30 seconds). If the property is not set, then the agent immediately terminates. ...OR... 2. When the
agent polls a non-existent config file and this is not the first time the file is polled, then the agent makes no config changes for this polling period. The
agent continues polling rather than terminating.

Log4J Appender

Appends Log4j events to a flume agent’s avro source. A client using this appender must have the flume-ng-sdk in the classpath (eg, flume-ng-sdk-
1.3.0.jar). Required properties are in bold.

Property Name Default Description
Hostname - The hostname on which a remote Flume agent is running with an avro source.
Port - The port at which the remote Flume agent’s avro source is listening.

Sample log4j.properties file:
#eue
log4j.appender.flume = org.apache.flume.clients.log4jappender.Log4jAppender

log4j.appender.flume.Hostname = example.com
log4j.appender.flume.Port = 41414

configure a class's logger to output to the flume appender
log4j.logger.org.example.MyClass = DEBUG, flume
#eun

Security

The HDFS sink supports Kerberos authentication if the underlying HDFS is running in secure mode. Please refer to the HDFS Sink section for
configuring the HDFS sink Kerberos-related options.

file:///Users/noland/workspaces/flume-apache-trunk-golden/flume/target/site/FlumeUserGuide.html 23/27

12/4/12 Flume 1.3.0 User Guide — Apache Flume documentation

Monitoring

Monitoring in Flume is still a work in progress. Changes can happen very often. Several Flume components report metrics to the JMX platform MBean
server. These metrics can be queried using Jconsole.

Ganglia Reporting

Flume can also report these metrics to Ganglia 3 or Ganglia 3.1 metanodes. To report metrics to Ganglia, a flume agent must be started with this support.
The Flume agent has to be started by passing in the following parameters as system properties prefixed by fiume.monitoring., and can be specified in the

flume-env.sh:

Property Name Default Description

type - The component type name, has to be ganglia

hosts - Comma separated list of hostname:port

pollinterval 60 Time, in seconds, between consecutive reporting to ganglia server
isGanglia3 false Ganglia server version is 3. By default, Flume sends in ganglia 3.1 format

We can start Flume with Ganglia support as follows:

$ bin/flume-ng agent --conf-file example.conf --name al -Dflume.monitoring.type=ganglia -Dflume.monitoring.hosts=com.example:1234,com.

JSON Reporting

Flume can also report metrics in a JSON format. To enable reporting in JSON format, Flume hosts a Web server on a configurable port. Flume reports
metrics in the following JSON format:

{
"typeNamel.componentNamel" : {"metricl"
"typeName2.componentName2" : {"metric3"

}

"metricvaluel”, "metric2" : "metricValue2"},
"metricvalue3", "metric4" : "metricvalued"}

Here is an example:

{
"CHANNEL.fileChannel": {"EventPutSuccessCount":"468085",

"Type":"CHANNEL",
"StopTime":"0",
"EventPutAttemptCount":"468086",
"ChannelSize":"233428",
"StartTime":"1344882233070",
"EventTakeSuccessCount":"458200",
"ChannelCapacity":"600000",
"EventTakeAttemptCount":"458288"},
"CHANNEL.memChannel": {"EventPutSuccessCount":"22948908",
"Type":"CHANNEL",
"StopTime":"0",
"EventPutAttemptCount":"22948908",
"ChannelSize":"5",
"StartTime":"1344882209413",
"EventTakeSuccessCount":"22948900",
"ChannelCapacity":"100",
"EventTakeAttemptCount":"22948908"}

}

Property Name Default Description

type - The component type name, has to be nttp
port 41414 The port to start the server on.

We can start Flume with Ganglia support as follows:
$ bin/flume-ng agent --conf-file example.conf --name al -Dflume.monitoring.type=http -Dflume.monitoring.port=34545

Metrics will then be available at http:/<hostname>:<port>/metrics webpage. Custom components can report metrics as mentioned in the Ganglia
section above.

Custom Reporting
It is possible to report metrics to other systems by writing servers that do the reporting. Any reporting class has to implement the interface,
org.apache.flume. instrumentation.Monitorservice. SUCh a class can be used the same way the GangliaServer is used for reporting. They can poll the

platform mbean server to poll the mbeans for metrics. For example, if an HTTP monitoring service called rrrereporting can be used as follows:

$ bin/flume-ng agent --conf-file example.conf --name al -Dflume.monitoring.type=com.example.reporting.HTTPReporting -Dflume.monitorinc

Property Name Default Description
type - The component type name, has to be FQCN

file:///Users/noland/workspaces/flume-apache-trunk-golden/flume/target/site/FlumeUserGuide.html 24127

12/4/12 Flume 1.3.0 User Guide — Apache Flume documentation

Reporting metrics from custom components

Any custom flume components should inherit from the org.apache. flume. instrumentation.Monitoredcountercroup Class. The class should then provide getter
methods for each of the metrics it exposes. See the code below. The MonitoredCounterGroup expects a list of attributes whose metrics are exposed by
this class. As of now, this class only supports exposing metrics as long values.

public class SinkCounter extends MonitoredCounterGroup implements
SinkCounterMBean {

private static final String COUNTER_CONNECTION_CREATED =
"sink.connection.creation.count";

private static final String COUNTER_CONNECTION_CLOSED =
"sink.connection.closed.count";

private static final String COUNTER_CONNECTION_ FAILED =
"sink.connection.failed.count";

private static final String COUNTER_BATCH_EMPTY =
"sink.batch.empty";

private static final String COUNTER BATCH_UNDERFLOW =
"sink.batch.underflow";

private static final String COUNTER_BATCH_COMPLETE =
"sink.batch.complete";

private static final String COUNTER_EVENT_DRAIN_ATTEMPT =
"sink.event.drain.attempt";

private static final String COUNTER_EVENT_DRAIN_SUCCESS
"sink.event.drain.sucess";

private static final String[] ATTRIBUTES = {
COUNTER_CONNECTION_CREATED, COUNTER_CONNECTION_CLOSED,
COUNTER_CONNECTION FAILED, COUNTER_BATCH EMPTY,
COUNTER_BATCH UNDERFLOW, COUNTER BATCH COMPLETE,
COUNTER_EVENT_DRAIN_ATTEMPT, COUNTER_EVENT_DRAIN_SUCCESS
}i

public SinkCounter(String name) {
super (MonitoredCounterGroup.Type.SINK, name, ATTRIBUTES);
}

@Override

public long getConnectionCreatedCount() {
return get (COUNTER_CONNECTION_CREATED) ;

}

public long incrementConnectionCreatedCount() {
return increment (COUNTER_CONNECTION_CREATED) ;

}

Topology Design Considerations

Flume is very flexible and allows a large range of possible deployment scenarios. If you plan to use Flume in a large, production deployment, it is
prudent to spend some time thinking about how to express your problem in terms of a Flume topology. This section covers a few considerations.

Is Flume a good fit for your problem?

If you need to ingest textual log data into Hadoop/HDFS then Flume is the right fit for your problem, full stop. For other use cases, here are some
guidelines:

Flume is designed to transport and ingest regularly generated event data over relatively stable, potentially complex topologies. The notion of “event
data” is very broadly defined. To Flume, an event is just a generic blob of bytes. There are some limitations on how large an event can be - for instance,
it cannot be larger than you can store in memory or on disk on a single machine - but in practice flume events can be everything from textual log entries
to image files. The key property of an event is that they are generated in a continuous, streaming fashion. If your data is not regularly generated (i.e. you
are trying to do a single bulk load of data into a Hadoop cluster) then Flume will still work, but it is probably overkill for your situation. Flume likes
relatively stable topologies. Your topologies do not need to be immutable, because Flume can deal with changes in topology without losing data and
can also tolerate periodic reconfiguration due to fail-over or provisioning. It probably won’t work well if you plant to change topologies every day,
because reconfiguration takes some thought and overhead.

Flow reliability in Flume

The reliability of a Flume flow depends on several factors. By adjusting these factors, you can achieve a wide array of reliability options with Flume.

What type of channel you use. Flume has both durable channels (those which will persist data to disk) and non durable channels (those which will

lose data if a machine fails). Durable channels use disk-based storage, and data stored in such channels will persist across machine restarts or non

disk-related failures.

Whether your channels are sufficiently provisioned for the workload. Channels in Flume act as buffers at various hops. These buffers have a fixed
file:///Users/noland/workspaces/flume-apache-trunk-golden/flume/target/site/FlumeUserGuide.html 25/27

12/4/12 Flume 1.3.0 User Guide — Apache Flume documentation

capacity, and once that capacity is full you will create back pressure on earlier points in the flow. If this pressure propagates to the source of the flow,
Flume will become unavailable and may lose data.

Whether you use redundant topologies. Flume let’s you replicate flows across redundant topologies. This can provide a very easy source of fault
tolerance and one which is overcomes both disk or machine failures.

The best way to think about reliability in a Flume topology is to consider various failure scenarios and their outcomes. What happens if a disk fails? What
happens if a machine fails? What happens if your terminal sink (e.g. HDFS) goes down for some time and you have back pressure? The space of
possible designs is huge, but the underlying questions you need to ask are just a handful.

Flume topology design
The first step in designing a Flume topology is to enumerate all sources and destinations (terminal sinks) for your data. These will define the edge points
of your topology. The next consideration is whether to introduce intermediate aggregation tiers or event routing. If you are collecting data form a large
number of sources, it can be helpful to aggregate the data in order to simplify ingestion at the terminal sink. An aggregation tier can also smooth out

burstiness from sources or unavailability at sinks, by acting as a buffer. If you are routing data between different locations, you may also want to split
flows at various points: this creates sub-topologies which may themselves include aggregation points.

Sizing a Flume deployment
Once you have an idea of what your topology will look like, the next question is how much hardware and networking capacity is needed. This starts by
quantifying how much data you generate. That is not always a simple task! Most data streams are bursty (for instance, due to diurnal patterns) and
potentially unpredictable. A good starting point is to think about the maximum throughput you’ll have in each tier of the topology, both in terms of events
per second and bytes per second. Once you know the required throughput of a given tier, you can calulate a lower bound on how many nodes you
require for that tier. To determine attainable throughput, it's best to experiment with Flume on your hardware, using synthetic or sampled event data. In

general, disk-based channels should get 10’s of MB/s and memory based channels should get 100’s of MB/s or more. Performance will vary widely,
however depending on hardware and operating environment.

Sizing aggregate throughput gives you a lower bound on the number of nodes you will need to each tier. There are several reasons to have additional
nodes, such as increased redundancy and better ability to absorb bursts in load.

Troubleshooting

Handling agent failures
If the Flume agent goes down then the all the flows hosted on that agent are aborted. Once the agent is restarted, then flow will resume. The flow using
file channel or other stable channel will resume processing events where it left off. If the agent can’t be restarted on the same, then there an option to

migrate the database to another hardware and setup a new Flume agent that can resume processing the events saved in the db. The database HA
futures can be leveraged to move the Flume agent to another host.

Compatibility
HDFS
Currently Flume supports HDFS 0.20.2 and 0.23.

AVRO

TBD

Additional version requirements

TBD

Tracing

TBD

More Sample Configs

TBD

Component Summary

Component Interface Type Alias Implementation Class

org.apache.flume.Channel memory org.apache.flume.channel.MemoryChannel
org.apache.flume.Channel jdbc org.apache.flume.channel.jdbc.JdbcChannel
org.apache.flume.Channel recoverablememory org.apache.flume.channel.recoverable.memory.RecoverableMemory
org.apache.flume.Channel file org.apache.flume.channel file.FileChannel

file:///Users/noland/workspaces/flume-apache-trunk-golden/flume/target/site/FlumeUserGuide.html 26/27

12/4/12 Flume 1.3.0 User Guide — Apache Flume documentation

org.apache.flume.Channel -
org.apache.flume.Channel -

org.apache.flume.Source avro
org.apache.flume.Source netcat
org.apache.flume.Source seq
org.apache.flume.Source exec
org.apache.flume.Source syslogtcp
org.apache.flume.Source multiport_syslogtcp
org.apache.flume.Source syslogudp

org.apache.flume.Source -
org.apache.flume.Source -
org.apache.flume.Source -

org.apache.flume.Sink null
org.apache.flume.Sink logger
org.apache.flume.Sink avro
org.apache.flume.Sink hdfs

org.apache.flume.Sink -
org.apache.flume.Sink -
org.apache.flume.Sink -

org.apache.flume.Sink file_roll
org.apache.flume.Sink irc
org.apache.flume.Sink -
org.apache.flume.ChannelSelector replicating
org.apache.flume.ChannelSelector multiplexing
org.apache.flume.ChannelSelector -
org.apache.flume.SinkProcessor default
org.apache.flume.SinkProcessor failover
org.apache.flume.SinkProcessor load_balance
org.apache.flume.SinkProcessor -
org.apache.flume.interceptor.Interceptor timestamp
org.apache.flume.interceptor.Interceptor host
org.apache.flume.interceptor.Interceptor static
org.apache.flume.interceptor.Interceptor regex_filter
org.apache.flume.interceptor.Interceptor regex_extractor

org.apache.flume.channel.file.encryption.KeyProvider$Builder jceksfile

org.apache.flume.channel file.encryption.KeyProvider$Builder —

org.apache.flume.channel.file.encryption.CipherProvider aesctrnopadding
org.apache.flume.channel.file.encryption.CipherProvider -
org.apache.flume.serialization.EventSerializer$Builder text
org.apache.flume.serialization.EventSerializer$Builder avro_event

org.apache.flume.serialization.EventSerializer$Builder -

Alias Conventions

org.apache.flume.channel.PseudoTxnMemoryChannel
org.example.MyChannel
org.apache.flume.source.AvroSource
org.apache.flume.source.NetcatSource
org.apache.flume.source.SequenceGeneratorSource
org.apache.flume.source.ExecSource
org.apache.flume.source.SyslogTcpSource
org.apache.flume.source.MultiportSyslogTCPSource
org.apache.flume.source.SyslogUDPSource
org.apache.flume.source.avroLegacy.AvroLegacySource
org.apache.flume.source. thriftLegacy.ThriftLegacySource
org.example.MySource

org.apache.flume.sink.NullSink
org.apache.flume.sink.LoggerSink
org.apache.flume.sink.AvroSink
org.apache.flume.sink.hdfs. HDFSEventSink
org.apache.flume.sink.hbase.HBaseSink
org.apache.flume.sink.hbase.AsyncHBaseSink
org.apache.flume.sink.elasticsearch.ElasticSearchSink
org.apache.flume.sink.RollingFileSink
org.apache.flume.sink.irc.IRCSink

org.example.MySink
org.apache.flume.channel.ReplicatingChannelSelector
org.apache.flume.channel.MultiplexingChannelSelector
org.example.MyChannelSelector
org.apache.flume.sink.DefaultSinkProcessor
org.apache.flume.sink.FailoverSinkProcessor
org.apache.flume.sink.LoadBalancingSinkProcessor

org.apache.flume.interceptor. TimestamplInterceptor$Builder
org.apache.flume.interceptor.HostInterceptor$Builder
org.apache.flume.interceptor.Staticinterceptor$Builder
org.apache.flume.interceptor.RegexFilteringInterceptor$Builder
org.apache.flume.interceptor.RegexFilteringInterceptor$Builder
org.apache.flume.channel.file.encryption.JCEFileKeyProvider

org.example.MyKeyProvider
org.apache.flume.channel.file.encryption. AESCTRNoPaddingProvic
org.example.MyCipherProvider
org.apache.flume.serialization.BodyTextEventSerializer$Builder
org.apache.flume.serialization.FlumeEventAvroEventSerializer$Buil
org.example.MyEventSerializer$Builder

These conventions for alias names are used in the component-specific examples above, to keep the names short and consistent across all examples.

Alias Name Alias Type
agent
channel
source
sink

sink group
interceptor
key

host
serializer

O o< T | X T~ 0o

file:///Users/noland/workspaces/flume-apache-trunk-golden/flume/target/site/FlumeUserGuide.html

27/27

