
Flume User Guide

version 1.2.0

Apache Flume

July 23, 2012

Contents
Flume 1.2.0 User Guide 1

Introduction 1

Overview 1

System Requirements 1

Architecture 1

Data flow model 1

Complex flows 1

Reliability 1

Recoverability 2

Setup 2

Setting up an agent 2

Configuring individual components 2

Wiring the pieces together 2

Starting an agent 2

A simple example 2

Data ingestion 3

RPC 3

Executing commands 3

Network streams 4

Setting multi-agent flow 4

Consolidation 4

Multiplexing the flow 4

Configuration 4

Defining the flow 5

Configuring individual components 5

Adding multiple flows in an agent 6

Configuring a multi agent flow 6

Fan out flow 7

Flume Sources 8

Avro Source 8

Exec Source 9

NetCat Source 10

Sequence Generator Source 10

Syslog Sources 10

Syslog TCP Source 11

Syslog UDP Source 11

Legacy Sources 11

Avro Legacy Source 12

Thrift Legacy Source 12

Custom Source 13

Flume Sinks 13

HDFS Sink 13

Logger Sink 15

Avro Sink 15

IRC Sink 15

File Roll Sink 16

Null Sink 16

HBaseSinks 17

HBaseSink 17

AsyncHBaseSink 17

Custom Sink 18

Flume Channels 18

Memory Channel 18

JDBC Channel 19

Recoverable Memory Channel 19

File Channel 20

Pseudo Transaction Channel 20

Custom Channel 21

Flume Channel Selectors 21

Replicating Channel Selector (default) 21

Multiplexing Channel Selector 21

Custom Channel Selector 21

Flume Sink Processors 22

Default Sink Processor 22

Failover Sink Processor 22

Load balancing Sink Processor 23

Custom Sink Processor 23

Flume Interceptors 23

Timestamp Interceptor 24

Host Interceptor 24

Flume Properties 24

Property: flume.called.from.service 24

Log4J Appender 24

Security 25

Monitoring 25

Troubleshooting 25

Handling agent failures 25

Compatibility 25

HDFS 25

AVRO 25

Additional version requirements 25

Tracing 25

More Sample Configs 25

Component Summary 25

Flume 1.2.0 User Guide

Introduction

Overview
Apache Flume is a distributed, reliable, and available system for efficiently collecting, aggregating and moving large
amounts of log data from many different sources to a centralized data store.

Apache Flume is a top level project at the Apache Software Foundation. There are currently two release code lines
available, versions 0.9.x and 1.x. This documentation applies to the 1.x codeline. Please click here for the Flume
0.9.x User Guide.

System Requirements
TBD

Architecture

Data flow model

A Flume event is defined as a unit of data flow having a byte payload and an optional set of string attributes. A
Flume agent is a (JVM) process that hosts the components through which events flow from an external source to the
next destination (hop).

A Flume source consumes events delivered to it by an external source like a web server. The external source sends
events to Flume in a format that is recognized by the target Flume source. For example, an Avro Flume source can
be used to receive Avro events from Avro clients or other Flume agents in the flow that send events from an Avro
sink. When a Flume source receives an event, it stores it into one or more channels. The channel is a passive store
that keeps the event until it's consumed by a Flume sink. The JDBC channel is one example -- it uses a filesystem
backed embedded database. The sink removes the event from the channel and puts it into an external repository
like HDFS (via Flume HDFS sink) or forwards it to the Flume source of the next Flume agent (next hop) in the flow.
The source and sink within the given agent run asynchronously with the events staged in the channel.

Complex flows

Flume allows a user to build multi-hop flows where events travel through multiple agents before reaching the final
destination. It also allows fan-in and fan-out flows, contextual routing and backup routes (fail-over) for failed hops.

Reliability

The events are staged in a channel on each agent. The events are then delivered to the next agent or terminal
repository (like HDFS) in the flow. The events are removed from a channel only after they are stored in the channel
of next agent or in the terminal repository. This is a how the single-hop message delivery semantics in Flume
provide end-to-end reliability of the flow.

Flume uses a transactional approach to guarantee the reliable delivery of the events. The sources and sinks
encapsulate in a transaction the storage/retrieval, respectively, of the events placed in or provided by a transaction
provided by the channel. This ensures that the set of events are reliably passed from point to point in the flow. In the
case of a multi-hop flow, the sink from the previous hop and the source from the next hop both have their
transactions running to ensure that the data is safely stored in the channel of the next hop.

Flume 1.2.0 User Guide

1

http://archive.cloudera.com/cdh/3/flume/UserGuide/
http://archive.cloudera.com/cdh/3/flume/UserGuide/

Recoverability

The events are staged in the channel, which manages recovery from failure. Flume supports a durable JDBC
channel which is backed by a relational database. There's also a memory channel which simply stores the events in
an in-memory queue, which is faster but any events still left in the memory channel when an agent process dies
can't be recovered.

Setup

Setting up an agent
Flume agent configuration is stored in a local configuration file. This is a text file which has a format follows the Java
properties file format. Configurations for one or more agents can be specified in the same configuration file. The
configuration file includes properties of each source, sink and channel in an agent and how they are wired together
to form data flows.

Configuring individual components

Each component (source, sink or channel) in the flow has a name, type, and set of properties that are specific to the
type and instantiation. For example, an Avro source needs a hostname (or IP address) and a port number to receive
data from. A memory channel can have max queue size ("capacity"), and an HDFS sink needs to know the file
system URI, path to create files, frequency of file rotation ("hdfs.rollInterval") etc. All such attributes of a component
needs to be set in the properties file of the hosting Flume agent.

Wiring the pieces together

The agent needs to know what individual components to load and how they are connected in order to constitute the
flow. This is done by listing the names of each of the sources, sinks and channels in the agent, and then specifying
the connecting channel for each sink and source. For example, a agent flows events from an Avro source called
avroWeb to HDFS sink hdfs-cluster1 via a JDBC channel called jdbc-channel. The configuration file will contain
names of these components and jdbc-channel as a shared channel for both avroWeb source and hdfs-cluster1 sink.

Starting an agent

An agent is started using a shell script called flume-ng which is located in the bin directory of the Flume distribution.
You need to specify the agent name, the config directory, and the config file on the command line:

$ bin/flume-ng agent -n $agent_name -c conf -f conf/flume-conf.properties.template

Now the agent will start running source and sinks configured in the given properties file.

A simple example

Here, we give an example configuration file, describing a single-node Flume deployment. This configuration lets a
user generate events and subsequently logs them to the console.

example.conf: A single-node Flume configuration

Name the components on this agent
agent1.sources = source1
agent1.sinks = sink1
agent1.channels = channel1

Describe/configure source1
agent1.sources.source1.type = netcat
agent1.sources.source1.bind = localhost
agent1.sources.source1.port = 44444

Describe sink1
agent1.sinks.sink1.type = logger

Setup

2

Use a channel which buffers events in memory
agent1.channels.channel1.type = memory
agent1.channels.channel1.capacity = 1000
agent1.channels.channel1.transactionCapactiy = 100

Bind the source and sink to the channel
agent1.sources.source1.channels = channel1
agent1.sinks.sink1.channel = channel1

This configuration defines a single agent, called agent1. agent1 has a source that listens for data on port 44444, a
channel that buffers event data in memory, and a sink that logs event data to the console. The configuration file
names the various components, then describes their types and configuration parameters. A given configuration file
might define several named agents; when a given Flume process is launched a flag is passed telling it which named
agent to manifest.

Given this configuration file, we can start Flume as follows:

$ bin/flume-ng agent --conf-file example.conf --name agent1 -Dflume.root.logger=INFO,console

Note that in a full deployment we would typically include one more option: --conf=<conf-dir>. The
<conf-dir> directory would include a shell script flume-env.sh and potentially a log4j properties file. In this
example, we pass a Java option to force Flume to log to the console and we go without a custom environment script.

From a separate terminal, we can then telnet port 44444 and send Flume an event:

$ telnet localhost 44444
Trying 127.0.0.1...
Connected to localhost.localdomain (127.0.0.1).
Escape character is '^]'.
Hello world! <ENTER>
OK

The original Flume terminal will output the event in a log message.

12/06/19 15:32:19 INFO source.NetcatSource: Source starting
12/06/19 15:32:19 INFO source.NetcatSource: Created serverSocket:sun.nio.ch.ServerSocketChannelImpl[/127.0.0.1:44444]
12/06/19 15:32:34 INFO sink.LoggerSink: Event: { headers:{} body: 48 65 6C 6C 6F 20 77 6F 72 6C 64 21 0D Hello world!. }

Congratulations - you've successfully configured and deployed a Flume agent! Subsequent sections cover agent
configuration in much more detail.

Data ingestion
Flume supports a number of mechanisms to ingest data from external sources.

RPC

An Avro client included in the Flume distribution can send a given file to Flume Avro source using avro RPC
mechanism:

$ bin/flume-ng avro-client -H localhost -p 41414 -F /usr/logs/log.10

The above command will send the contents of /usr/logs/log.10 to to the Flume source listening on that ports.

Executing commands

There's an exec source that executes a given command and consumes the output. A single 'line' of output ie. text
followed by carriage return ('\r') or line feed ('\n') or both together.

Note

Flume does not support tail as a source. One can wrap the tail command in an exec source to stream the file.

Setup

3

Network streams

Flume supports the following mechanisms to read data from popular log stream types, such as:

1. Avro

2. Syslog

3. Netcat

Setting multi-agent flow

In order to flow the data across multiple agents or hops, the sink of the previous agent and source of the current hop
need to be avro type with the sink pointing to the hostname (or IP address) and port of the source.

Consolidation
A very common scenario in log collection is a large number of log producing clients sending data to a few consumer
agents that are attached to the storage subsystem. For examples, logs collected from hundreds of web servers sent
to a dozen of agents that write to HDFS cluster.

This can be achieved in Flume by configuring a number of first tier agents with an avro sink, all pointing to an avro
source of single agent. This source on the second tier agent consolidates the received events into a single channel
which is consumed by a sink to its final destination.

Multiplexing the flow
Flume supports multiplexing the event flow to one or more destinations. This is achieved by defining a flow
multiplexer that can replicate or selectively route an event to one or more channels.

The above example shows a source from agent "foo" fanning out the flow to three different channels. This fan out
can be replicating or multiplexing. In case of replicating flow, each event is sent to all three channels. For the
multiplexing case, an event is delivered to a subset of available channels when an event's attribute matches a
preconfigured value. For example, if an event attribute called "txnType" is set to "customer", then it should go to
channel1 and channel3, if it's "vendor" then it should go to channel2, otherwise channel3. The mapping can be set in
the agent's configuration file.

Configuration
As mentioned in the earlier section, Flume agent configuration is read from a file that resembles a Java property file
format with hierarchical property settings.

Configuration

4

Defining the flow
To define the flow within a single agent, you need to link the sources and sinks via a channel. You need to list the
sources, sinks and channels for the given agent, and then point the source and sink to a channel. A source instance
can specify multiple channels, but a sink instance can only specify on channel. The format is as follows:

list the sources, sinks and channels for the agent
<Agent>.sources = <Source>
<Agent>.sinks = <Sink>
<Agent>.channels = <Channel1> <Channel2>

set channel for source
<Agent>.sources.<Source>.channels = <Channel1> <Channel2> ...

set channel for sink
<Agent>.sinks.<Sink>.channel = <Channel1>

For example an agent named agent_foo is reading data from an external avro client and sending it to HDFS via a
memory channel. The config file weblog.config could look like:

list the sources, sinks and channels for the agent
agent_foo.sources = avro-appserver-src-1
agent_foo.sinks = hdfs-sink-1
agent_foo.channels = mem-channel-1

set channel for source
agent_foo.sources.avro-appserver-src-1.channels = mem-channel-1

set channel for sink
agent_foo.sinks.hdfs-sink-1.channel = mem-channel-1

This will make the events flow from avro-AppSrv-source to hdfs-Cluster1-sink through the memory channel
mem-channel-1. When the agent is started with the weblog.config as its config file, it will instantiate that flow.

Configuring individual components
After defining the flow, you need to set properties of each source, sink and channel. This is done in the same
hierarchical namespace fashion where you set the component type and other values for the properties specific to
each component:

properties for sources
<Agent>.sources.<Source>.<someProperty> = <someValue>

properties for channels
<Agent>.channel.<Channel>.<someProperty> = <someValue>

properties for sinks
<Agent>.sources.<Sink>.<someProperty> = <someValue>

The property "type" needs to be set for each component for Flume to understand what kind of object it needs to be.
Each source, sink and channel type has its own set of properties required for it to function as intended. All those
need to be set as needed. In the previous example, we have a flow from avro-AppSrv-source to hdfs-Cluster1-sink
through the memory channel mem-channel-1. Here's an example that shows configuration of each of those
components:

agent_foo.sources = avro-AppSrv-source
agent_foo.sinks = hdfs-Cluster1-sink
agent_foo.channels = mem-channel-1

set channel for sources, sinks

properties of avro-AppSrv-source
agent_foo.sources.avro-AppSrv-source.type = avro

Configuration

5

agent_foo.sources.avro-AppSrv-source.bind = localhost
agent_foo.sources.avro-AppSrv-source.port = 10000

properties of mem-channel-1
agent_foo.channels.mem-channel-1.type = memory
agent_foo.channels.mem-channel-1.capacity = 1000
agent_foo.channels.mem-channel-1.transactionCapacity = 100

properties of hdfs-Cluster1-sink
agent_foo.sinks.hdfs-Cluster1-sink.type = hdfs
agent_foo.sinks.hdfs-Cluster1-sink.hdfs.path = hdfs://namenode/flume/webdata

#...

Adding multiple flows in an agent
A single Flume agent can contain several independent flows. You can list multiple sources, sinks and channels in a
config. These components can be linked to form multiple flows:

list the sources, sinks and channels for the agent
<Agent>.sources = <Source1> <Source2>
<Agent>.sinks = <Sink1> <Sink2>
<Agent>.channels = <Channel1> <Channel2>

Then you can link the sources and sinks to their corresponding channels (for sources) of channel (for sinks) to setup
two different flows. For example, if you need to setup two flows in an agent, one going from an external avro client to
external HDFS and another from output of a tail to avro sink, then here's a config to do that:

list the sources, sinks and channels in the agent
agent_foo.sources = avro-AppSrv-source1 exec-tail-source2
agent_foo.sinks = hdfs-Cluster1-sink1 avro-forward-sink2
agent_foo.channels = mem-channel-1 jdbc-channel-2

flow #1 configuration
agent_foo.sources.avro-AppSrv-source1.channels = mem-channel-1
agent_foo.sinks.hdfs-Cluster1-sink1.channel = mem-channel-1

flow #2 configuration
agent_foo.sources.exec-tail-source2.channels = jdbc-channel-2
agent_foo.sinks.avro-forward-sink2.channel = jdbc-channel-2

Configuring a multi agent flow
To setup a multi-tier flow, you need to have an avro sink of first hop pointing to avro source of the next hop. This will
result in the first Flume agent forwarding events to the next Flume agent. For example, if you are periodically
sending files (1 file per event) using avro client to a local Flume agent, then this local agent can forward it to another
agent that has the mounted for storage.

Weblog agent config:

list sources, sinks and channels in the agent
agent_foo.sources = avro-AppSrv-source
agent_foo.sinks = avro-forward-sink
agent_foo.channels = jdbc-channel

define the flow
agent_foo.sources.avro-AppSrv-source.channels = jdbc-channel
agent_foo.sinks.avro-forward-sink.channel = jdbc-channel

avro sink properties
agent_foo.sources.avro-forward-sink.type = avro
agent_foo.sources.avro-forward-sink.hostname = 10.1.1.100

Configuration

6

agent_foo.sources.avro-forward-sink.port = 10000

configure other pieces
#...

HDFS agent config:

list sources, sinks and channels in the agent
agent_foo.sources = avro-collection-source
agent_foo.sinks = hdfs-sink
agent_foo.channels = mem-channel

define the flow
agent_foo.sources.avro-collection-source.channels = mem-channel
agent_foo.sinks.hdfs-sink.channel = mem-channel

avro sink properties
agent_foo.sources.avro-collection-source.type = avro
agent_foo.sources.avro-collection-source.bind = 10.1.1.100
agent_foo.sources.avro-collection-source.port = 10000

configure other pieces
#...

Here we link the avro-forward-sink from the weblog agent to the avro-collection-source of the hdfs agent. This will
result in the events coming from the external appserver source eventually getting stored in HDFS.

Fan out flow
As discussed in previous section, Flume support fanning out the flow from one source to multiple channels. There
are two modes of fan out, replicating and multiplexing. In the replicating flow the event is sent to all the configured
channels. In case of multiplexing, the event is sent to only a subset of qualifying channels. To fan out the flow, one
needs to specify a list of channels for a source and the policy for the fanning it out. This is done by adding a channel
"selector" that can be replicating or multiplexing. Then further specify the selection rules if it's a multiplexer. If you
don't specify an selector, then by default it's replicating:

List the sources, sinks and channels for the agent
<Agent>.sources = <Source1>
<Agent>.sinks = <Sink1> <Sink2>
<Agent>.channels = <Channel1> <Channel2>

set list of channels for source (separated by space)
<Agent>.sources.<Source1>.channels = <Channel1> <Channel2>

set channel for sinks
<Agent>.sinks.<Sink1>.channel = <Channel1>
<Agent>.sinks.<Sink2>.channel = <Channel2>

<Agent>.sources.<Source1>.selector.type = replicating

The multiplexing select has a further set of properties to bifurcate the flow. This requires specifying a mapping of an
event attribute to a set for channel. The selector checks for each configured attribute in the event header. If it
matches the specified value, then that event is sent to all the channels mapped to that value. If there's no match,
then the event is sent to set of channels configured as default:

Mapping for multiplexing selector
<Agent>.sources.<Source1>.selector.type = multiplexing
<Agent>.sources.<Source1>.selector.header = <someHeader>
<Agent>.sources.<Source1>.selector.mapping.<Value1> = <Channel1>
<Agent>.sources.<Source1>.selector.mapping.<Value2> = <Channel1> <Channel2>
<Agent>.sources.<Source1>.selector.mapping.<Value3> = <Channel2>
#...

Configuration

7

<Agent>.sources.<Source1>.selector.default = <Channel2>

The mapping allows overlapping the channels for each value. The default must be set for a multiplexing select which
can also contain any number of channels.

The following example has a single flow that multiplexed to two paths. The agent named agent_foo has a single
avro source and two channels linked to two sinks:

list the sources, sinks and channels in the agent
agent_foo.sources = avro-AppSrv-source1
agent_foo.sinks = hdfs-Cluster1-sink1 avro-forward-sink2
agent_foo.channels = mem-channel-1 jdbc-channel-2

set channels for source
agent_foo.sources.avro-AppSrv-source1.channels = mem-channel-1 jdbc-channel-2

set channel for sinks
agent_foo.sinks.hdfs-Cluster1-sink1.channel = mem-channel-1
agent_foo.sinks.avro-forward-sink2.channel = jdbc-channel-2

channel selector configuration
agent_foo.sources.avro-AppSrv-source1.selector.type = multiplexing
agent_foo.sources.avro-AppSrv-source1.selector.header = State
agent_foo.sources.avro-AppSrv-source1.selector.mapping.CA = mem-channel-1
agent_foo.sources.avro-AppSrv-source1.selector.mapping.AZ = jdbc-channel-2
agent_foo.sources.avro-AppSrv-source1.selector.mapping.NY = mem-channel-1 jdbc-channel-2
agent_foo.sources.avro-AppSrv-source1.selector.default = mem-channel-1

The selector checks for a header called "State". If the value is "CA" then its sent to mem-channel-1, if its "AZ" then it
goes to jdbc-channel-2 or if its "NY" then both. If the "State" header is not set or doesn't match any of the three, then
it goes to mem-channel-1 which is designated as 'default'.

Flume Sources

Avro Source

Listens on Avro port and receives events from external Avro client streams. When paired with the built-in AvroSink
on another (previous hop) Flume agent, it can create tiered collection topologies. Required properties are in bold.

Property Name Default Description

channels --

type -- The component type name, needs to be avro

bind -- hostname or IP address to listen on

port -- Port # to bind to

threads -- Maximum number of worker threads to spawn

interceptors -- Space separated list of interceptors

interceptors.*

Example for agent named agent_foo:

agent_foo.sources = avrosource-1
agent_foo.channels = memoryChannel-1
agent_foo.sources.avrosource-1.type = avro
agent_foo.sources.avrosource-1.channels = memoryChannel-1
agent_foo.sources.avrosource-1.bind = 0.0.0.0
agent_foo.sources.avrosource-1.port = 4141

Configuration

8

Exec Source

Exec source runs a given Unix command on start-up and expects that process to continuously produce data on
standard out (stderr is simply discarded, unless property logStdErr is set to true). If the process exits for any reason,
the source also exits and will produce no further data. This means configurations such as cat [named pipe] or
tail -F [file] are going to produce the desired results where as date will probably not - the former two
commands produce streams of data where as the latter produces a single event and exits.

Required properties are in bold.

Property Name Default Description

channels --

type -- The component type name, needs to be exec

command -- The command to execute

restartThrottle 10000 Amount of time (in millis) to wait before attempting a restart

restart false Whether the executed cmd should be restarted if it dies

logStdErr false Whether the command's stderr should be logged

selector.type replicating replicating or multiplexing

selector.* Depends on the selector.type value

interceptors -- Space separated list of interceptors

interceptors.*

Warning

The problem with ExecSource and other asynchronous sources is that the source can not guarantee that if there
is a failure to put the event into the Channel the client knows about it. In such cases, the data will be lost. As a
for instance, one of the most commonly requested features is the tail -F [file]-like use case where an
application writes to a log file on disk and Flume tails the file, sending each line as an event. While this is
possible, there's an obvious problem; what happens if the channel fills up and Flume can't send an event? Flume
has no way of indicating to the application writing the log file that it needs to retain the log or that the event hasn't
been sent, for some reason. If this doesn't make sense, you need only know this: Your application can never
guarantee data has been received when using a unidirectional asynchronous interface such as ExecSource! As
an extension of this warning - and to be completely clear - there is absolutely zero guarantee of event delivery
when using this source. You have been warned.

Note

You can use ExecSource to emulate TailSource from Flume 0.9x (flume og). Just use unix command
tail -F /full/path/to/your/file. Parameter -F is better in this case than -f as it will also follow file
rotation.

Example for agent named agent_foo:

agent_foo.sources = tailsource-1
agent_foo.channels = memoryChannel-1
agent_foo.sources.tailsource-1.type = exec
agent_foo.sources.tailsource-1.command = tail -F /var/log/secure
agent_foo.sources.tailsource-1.channels = memoryChannel-1

Configuration

9

NetCat Source

A netcat-like source that listens on a given port and turns each line of text into an event. Acts like
nc -k -l [host] [port]. In other words, it opens a specified port and listens for data. The expectation is that
the supplied data is newline separated text. Each line of text is turned into a Flume event and sent via the connected
channel.

Required properties are in bold.

Property Name Default Description

channels --

type -- The component type name, needs to be netcat

bind -- Host name or IP address to bind to

port -- Port # to bind to

max-line-length 512 Max line length per event body (in bytes)

selector.type replicating replicating or multiplexing

selector.* Depends on the selector.type value

interceptors -- Space separated list of interceptors

interceptors.*

Example for agent named agent_foo:

agent_foo.sources = ncsource-1
agent_foo.channels = memoryChannel-1
agent_foo.sources.ncsource-1.type = netcat
agent_foo.sources.ncsource-1.bind = 0.0.0.0
agent_foo.sources.ncsource-1.bind = 6666
agent_foo.sources.ncsource-1.channels = memoryChannel-1

Sequence Generator Source

A simple sequence generator that continuously generates events with a counter that starts from 0 and increments by
1. Useful mainly for testing. Required properties are in bold.

Property Name Default Description

channels --

type -- The component type name, needs to be seq

selector.type replicating or multiplexing

selector.* replicating Depends on the selector.type value

interceptors -- Space separated list of interceptors

interceptors.*

Example for agent named agent_foo:

agent_foo.sources = ncsource-1
agent_foo.channels = memoryChannel-1
agent_foo.sources.ncsource-1.type = seq
agent_foo.sources.ncsource-1.channels = memoryChannel-1

Syslog Sources

Reads syslog data and generate Flume events. The UDP source treats an entire message as a single event. The
TCP source on creates a new event for a string of characters separated by carriage return ('n').

Required properties are in bold.

Configuration

10

Syslog TCP Source

Property Name Default Description

channels --

type -- The component type name, needs to be syslogtcp

host -- Host name or IP address to bind to

port -- Port # to bind to

eventSize 2500

selector.type replicating or multiplexing

selector.* replicating Depends on the selector.type value

interceptors -- Space separated list of interceptors

interceptors.*

For example, a syslog TCP source for agent named agent_foo:

agent_foo.sources = syslogsource-1
agent_foo.channels = memoryChannel-1
agent_foo.sources.syslogsource-1.type = syslogtcp
agent_foo.sources.syslogsource-1.port = 5140
agent_foo.sources.syslogsource-1.host = localhost
agent_foo.sources.syslogsource-1.channels = memoryChannel-1

Syslog UDP Source

Property Name Default Description

channels --

type -- The component type name, needs to be syslogudp

host -- Host name or IP address to bind to

port -- Port # to bind to

selector.type replicating or multiplexing

selector.* replicating Depends on the selector.type value

interceptors -- Space separated list of interceptors

interceptors.*

For example, a syslog UDP source for agent named agent_foo:

agent_foo.sources = syslogsource-1
agent_foo.channels = memoryChannel-1
agent_foo.sources.syslogsource-1.type = syslogudp
agent_foo.sources.syslogsource-1.port = 5140
agent_foo.sources.syslogsource-1.host = localhost
agent_foo.sources.syslogsource-1.channels = memoryChannel-1

Legacy Sources

The legacy sources allow a Flume 1.x agent to receive events from Flume 0.9.4 agents. It accepts events in the
Flume 0.9.4 format, converts them to the Flume 1.0 format, and stores them in the connected channel. The 0.9.4
event properties like timestamp, pri, host, nanos, etc get converted to 1.x event header attributes. The legacy source
supports both Avro and Thrift RPC connections. To use this bridge between two Flume versions, you need to start a
Flume 1.x agent with the avroLegacy or thriftLegacy source. The 0.9.4 agent should have the agent Sink pointing to
the host/port of the 1.x agent.

Configuration

11

Note

The reliability semantics of Flume 1.x are different from that of Flume 0.9.x. The E2E or DFO mode of a Flume
0.9.x agent will not be supported by the legacy source. The only supported 0.9.x mode is the best effort, though
the reliability setting of the 1.x flow will be applicable to the events once they are saved into the Flume 1.x
channel by the legacy source.

Required properties are in bold.

Avro Legacy Source

Property
Name Default Description

channels --

type -- The component type name, needs to be
org.apache.flume.source.avroLegacy.AvroLegacySource

host -- The hostname or IP address to bind to

port -- The port # to listen on

selector.type replicating or multiplexing

selector.* replicating Depends on the selector.type value

interceptors -- Space separated list of interceptors

interceptors.*

Example for agent named agent_foo:

agent_foo.sources = legacysource-1
agent_foo.channels = memoryChannel-1
agent_foo.sources.legacysource-1.type = org.apache.flume.source.avroLegacy.AvroLegacySource
agent_foo.sources.legacysource-1.host = 0.0.0.0
agent_foo.sources.legacysource-1.bind = 6666
agent_foo.sources.legacysource-1.channels = memoryChannel-1

Thrift Legacy Source

Property
Name Default Description

channels --

type -- The component type name, needs to be
org.apache.source.thriftLegacy.ThriftLegacySource

host -- The hostname or IP address to bind to

port -- The port # to listen on

selector.type replicating or multiplexing

selector.* replicating Depends on the selector.type value

interceptors -- Space separated list of interceptors

interceptors.*

Example for agent named agent_foo:

agent_foo.sources = legacysource-1
agent_foo.channels = memoryChannel-1
agent_foo.sources.legacysource-1.type = org.apache.source.thriftLegacy.ThriftLegacySource

Configuration

12

agent_foo.sources.legacysource-1.host = 0.0.0.0
agent_foo.sources.legacysource-1.bind = 6666
agent_foo.sources.legacysource-1.channels = memoryChannel-1

Custom Source

A custom source is your own implementation of the Source interface. A custom source's class and its dependencies
must be included in the agent's classpath when starting the Flume agent. The type of the custom source is its
FQCN.

Property Name Default Description

channels --

type -- The component type name, needs to be your FQCN

selector.type replicating or multiplexing

selector.* replicating Depends on the selector.type value

interceptors -- Space separated list of interceptors

interceptors.*

Example for agent named agent_foo:

agent_foo.sources = legacysource-1
agent_foo.channels = memoryChannel-1
agent_foo.sources.legacysource-1.type = your.namespace.YourClass
agent_foo.sources.legacysource-1.channels = memoryChannel-1

Flume Sinks

HDFS Sink

This sink writes events into the Hadoop Distributed File System (HDFS). It currently supports creating text and
sequence files. It supports compression in both file types. The files can be rolled (close current file and create a new
one) periodically based on the elapsed time or size of data or number of events. It also buckets/partitions data by
attributes like timestamp or machine where the event originated. The HDFS directory path may contain formatting
escape sequences that will replaced by the HDFS sink to generate a directory/file name to store the events. Using
this sink requires hadoop to be installed so that Flume can use the Hadoop jars to communicate with the HDFS
cluster. Note that a version of Hadoop that supports the sync() call is required.

The following are the escape sequences supported:

Alias Description

%{host} Substitute value of event header named "host". Arbitrary header names are supported.

%t Unix time in milliseconds

%a locale's short weekday name (Mon, Tue, ...)

%A locale's full weekday name (Monday, Tuesday, ...)

%b locale's short month name (Jan, Feb, ...)

%B locale's long month name (January, February, ...)

%c locale's date and time (Thu Mar 3 23:05:25 2005)

%d day of month (01)

%D date; same as %m/%d/%y

%H hour (00..23)

%I hour (01..12)

%j day of year (001..366)

Configuration

13

%k hour (0..23)

%m month (01..12)

%M minute (00..59)

%p locale's equivalent of am or pm

%s seconds since 1970-01-01 00:00:00 UTC

%S second (00..59)

%y last two digits of year (00..99)

%Y year (2010)

%z +hhmm numeric timezone (for example, -0400)

The file in use will have the name mangled to include ".tmp" at the end. Once the file is closed, this extension is
removed. This allows excluding partially complete files in the directory. Required properties are in bold.

Name Default Description

channel --

type -- The component type name, needs to be hdfs

hdfs.path -- HDFS directory path (eg hdfs://namenode/flume/webdata/)

hdfs.filePrefix FlumeDataName prefixed to files created by Flume in hdfs directory

hdfs.rollInterval 30 Number of seconds to wait before rolling current file (0 = never roll based on time
interval)

hdfs.rollSize 1024 File size to trigger roll, in bytes (0: never roll based on file size)

hdfs.rollCount 10 Number of events written to file before it rolled (0 = never roll based on number of
events)

hdfs.batchSize 1 number of events written to file before it flushed to HDFS

hdfs.txnEventMax100

hdfs.codeC -- Compression codec. one of following : gzip, bzip2, lzo, snappy

hdfs.fileType SequenceFileFile format: currently SequenceFile, DataStream or CompressedStream
(1)DataStream will not compress output file and please don't set codeC
(2)CompressedStream requires set hdfs.codeC with an available codeC

hdfs.maxOpenFiles5000

hdfs.writeFormat-- "Text" or "Writable"

hdfs.appendTimeout1000

hdfs.callTimeout10000

hdfs.threadsPoolSize10 Number of threads per HDFS sink for HDFS IO ops (open, write, etc.)

hdfs.rollTimerPoolSize1 Number of threads per HDFS sink for scheduling timed file rolling

hdfs.kerberosPrincipal-- Kerberos user principal for accessing secure HDFS

hdfs.kerberosKeytab-- Kerberos keytab for accessing secure HDFS

hdfs.round false Should the timestamp be rounded down (if true, affects all time based escape
sequences except %t)

hdfs.roundValue1 Rounded down to the highest multiple of this (in the unit configured using
hdfs.roundUnit), less than current time.

hdfs.roundUnit second The unit of the round down value - second, minute or hour.

serializer TEXT Other possible options include AVRO_EVENT or the fully-qualified class name of an
implementation of the EventSerializer.Builder interface.

serializer.*

Configuration

14

Example for agent named agent_foo:

agent_foo.channels = memoryChannel-1
agent_foo.sinks = hdfsSink-1
agent_foo.sinks.hdfsSink-1.type = hdfs
agent_foo.sinks.hdfsSink-1.channels = memoryChannel-1
agent_foo.sinks.hdfsSink-1.hdfs.path = /flume/events/%y-%m-%d/%H%M/%S
agent_foo.sinks.hdfsSink-1.hdfs.filePrefix = events-
agent_foo.sinks.hdfsSink-1.hdfs.round = true
agent_foo.sinks.hdfsSink-1.hdfs.roundValue = 10
agent_foo.sinks.hdfsSink-1.hdfs.roundUnit = minute

The above configuration will round down the timestamp to the last 10th minute. For example, an event with
timestamp 11:54:34 AM, June 12, 2012 will cause the hdfs path to become
/flume/events/2012-06-12/1150/00.

Logger Sink

Logs event at INFO level. Typically useful for testing/debugging purpose. Required properties are in bold.

Property Name Default Description

channel --

type -- The component type name, needs to be logger

Example for agent named agent_foo:

agent_foo.channels = memoryChannel-1
agent_foo.sinks = loggerSink-1
agent_foo.sinks.loggerSink-1.type = logger
agent_foo.sinks.loggerSink-1.channels = memoryChannel-1

Avro Sink

This sink forms one half of Flume's tiered collection support. Flume events sent to this sink are turned into Avro
events and sent to the configured hostname / port pair. The events are taken from the configured Channel in
batches of the configured batch size. Required properties are in bold.

Property Name Default Description

channel --

type -- The component type name, needs to be avro.

hostname -- The hostname or IP address to bind to.

port -- The port # to listen on.

batch-size 100 number of event to batch together for send.

connect-timeout 20000 Amount of time (ms) to allow for the first (handshake) request.

request-timeout 20000 Amount of time (ms) to allow for requests after the first.

Example for agent named agent_foo:

agent_foo.channels = memoryChannel-1
agent_foo.sinks = avroSink-1
agent_foo.sinks.avroSink-1.type = avro
agent_foo.sinks.avroSink-1.channels = memoryChannel-1
agent_foo.sinks.avroSink-1.hostname = 10.10.10.10
agent_foo.sinks.avroSink-1.port = 4545

IRC Sink

The IRC sink takes messages from attached channel and relays those to configured IRC destinations. Required
properties are in bold.

Configuration

15

Property Name Default Description

channel --

type -- The component type name, needs to be irc

hostname -- The hostname or IP address to connect to

port 6667 The port number of remote host to connect

nick -- Nick name

user -- User name

password -- User password

chan -- channel

name

splitlines -- (boolean)

splitchars n line separator (if you were to enter the default value into the config file, then you
would need to escape the backslash, like this: "\n")

Example for agent named agent_foo:

agent_foo.channels = memoryChannel-1
agent_foo.sinks = ircSink-1
agent_foo.sinks.ircSink-1.type = irc
agent_foo.sinks.ircSink-1.channels = memoryChannel-1
agent_foo.sinks.ircSink-1.hostname = irc.yourdomain.com
agent_foo.sinks.ircSink-1.nick = flume
agent_foo.sinks.ircSink-1.chan = #flume

File Roll Sink

Stores events on the local filesystem. Required properties are in bold.

Property
Name Default Description

channel --

type -- The component type name, needs to be FILE_ROLL.

sink.directory --

sink.rollInterval30 Roll the file every 30 seconds. Specifying 0 will disable rolling and cause all events to be
written to a single file.

sink.serializerTEXTOther possible options include AVRO_EVENT or the FQCN of an implementation of
EventSerializer.Builder interface.

Example for agent named agent_foo:

agent_foo.channels = memoryChannel-1
agent_foo.sinks = fileSink-1
agent_foo.sinks.fileSink-1.type = FILE_ROLL
agent_foo.sinks.fileSink-1.channels = memoryChannel-1
agent_foo.sinks.fileSink-1.sink.directory = /var/log/flume

Null Sink

Discards all events it receives from the channel. Required properties are in bold.

Property Name Default Description

channel --

type -- The component type name, needs to be NULL.

Configuration

16

Example for agent named agent_foo:

agent_foo.channels = memoryChannel-1
agent_foo.sinks = nullSink-1
agent_foo.sinks.nullSink-1.type = NULL
agent_foo.sinks.nullSink-1.channels = memoryChannel-1

HBaseSinks

HBaseSink

This sink writes data to HBase. The Hbase configuration is picked up from the first hbase-site.xml encountered in
the classpath. A class implementing HbaseEventSerializer which is specified by the configuration is used to convert
the events into HBase puts and/or increments. These puts and increments are then written to HBase. This sink
provides the same consistency guarantees as HBase, which is currently row-wise atomicity. In the event of Hbase
failing to write certain events, the sink will replay all events in that transaction. For convenience two serializers are
provided with flume. The SimpleHbaseEventSerializer (org.apache.flume.sink.hbase.SimpleHbaseEventSerializer)
writes the event body as is to HBase, and optionally increments a column in Hbase. This is primarily an example
implementation. The RegexHbaseEventSerializer (org.apache.flume.sink.hbase.RegexHbaseEventSerializer)
breaks the event body based on the given regex and writes each part into different columns.

The type is the FQCN: org.apache.flume.sink.hbase.HBaseSink. Required properties are in bold.

Property
Name Default Description

channel --

type -- The component type name, needs to be
org.apache.flume.sink.HBaseSink

table -- The name of the table in Hbase to write to.

columnFamily-- The column family in Hbase to write to.

batchSize 100 Number of events to be written per txn.

serializer org.apache.flume.sink.hbase.SimpleHbaseEventSerializer

serializer.* -- Properties to be passed to the serializer.

Example for agent named agent_foo:

agent_foo.channels = memoryChannel-1
agent_foo.sinks = hbaseSink-1
agent_foo.sinks.hbaseSink-1.type = org.apache.flume.sink.hbase.HBaseSink
agent_foo.sinks.hbaseSink-1.table = foo_table
agent_foo.sinks.hbaseSink-1.columnFamily = bar_cf
agent_foo.sinks.hbaseSink-1.serializer = org.apache.flume.sink.hbase.RegexHbaseEventSerializer
agent_foo.sinks.hbaseSink-1.channels = memoryChannel-1

AsyncHBaseSink

This sink writes data to HBase using an asynchronous model. A class implementing AsyncHbaseEventSerializer
which is specified by the configuration is used to convert the events into HBase puts and/or increments. These puts
and increments are then written to HBase. This sink provides the same consistency guarantees as HBase, which is
currently row-wise atomicity. In the event of Hbase failing to write certain events, the sink will replay all events in that
transaction. This sink is still experimental. The type is the FQCN: org.apache.flume.sink.hbase.AsyncHBaseSink.
Required properties are in bold.

Property
Name Default Description

channel --

type -- The component type name, needs to be
org.apache.flume.sink.AsyncHBaseSink

Configuration

17

table -- The name of the table in Hbase to write to.

columnFamily-- The column family in Hbase to write to.

batchSize 100 Number of events to be written per txn.

serializer org.apache.flume.sink.hbase.SimpleAsyncHbaseEventSerializer

serializer.* -- Properties to be passed to the serializer.

Example for agent named agent_foo:

agent_foo.channels = memoryChannel-1
agent_foo.sinks = hbaseSink-1
agent_foo.sinks.hbaseSink-1.type = org.apache.flume.sink.hbase.AsyncHBaseSink
agent_foo.sinks.hbaseSink-1.table = foo_table
agent_foo.sinks.hbaseSink-1.columnFamily = bar_cf
agent_foo.sinks.hbaseSink-1.serializer = org.apache.flume.sink.hbase.SimpleAsyncHbaseEventSerializer
agent_foo.sinks.hbaseSink-1.channels = memoryChannel-1

Custom Sink

A custom sink is your own implementation of the Sink interface. A custom sink's class and its dependencies must be
included in the agent's classpath when starting the Flume agent. The type of the custom sink is its FQCN. Required
properties are in bold.

Property Name Default Description

channel --

type -- The component type name, needs to be your FQCN

Example for agent named agent_foo:

agent_foo.channels = memoryChannel-1
agent_foo.sinks = customSink-1
agent_foo.sinks.customSink-1.type = your.namespace.YourClass
agent_foo.sinks.customSink-1.channels = memoryChannel-1

Flume Channels
Channels are the repositories where the events are staged on a agent. Source adds the events and Sink removes it.

Memory Channel

The events are stored in a an in-memory queue with configurable max size. It's ideal for flow that needs higher
throughput and prepared to lose the staged data in the event of a agent failures. Required properties are in bold.

Property Name Default Description

type -- The component type name, needs to be memory

capacity 100 The max number of events stored in the channel

transactionCapacity 100 The max number of events stored in the channel per transaction

keep-alive 3 Timeout in seconds for adding or removing an event

Example for agent named agent_foo:

agent_foo.channels = memoryChannel-1
agent_foo.channels.memoryChannel-1.type = memory
agent_foo.channels.memoryChannel-1.capacity = 1000

Configuration

18

JDBC Channel

The events are stored in a persistent storage that's backed by a database. The JDBC channel currently supports
embedded Derby. This is a durable channel that's ideal for the flows where recoverability is important. Required
properties are in bold.

Property Name Default Description

type -- The component type name, needs to be jdbc

db.type DERBY Database vendor, needs to be DERBY.

driver.class org.apache.derby.jdbc.EmbeddedDriverClass for vendor's JDBC driver

driver.url (constructed from other properties) JDBC connection URL

db.username "sa" User id for db connection

db.password -- password for db connection

connection.properties.file -- JDBC Connection property file path

create.schema true If true, then creates db schema if not there

create.index true Create indexes to speed up lookups

create.foreignkey true

transaction.isolation "READ_COMMITTED" Isolation level for db session
READ_UNCOMMITTED, READ_COMMITTED,
SERIALIZABLE, REPEATABLE_READ

maximum.connections 10 Max connections allowed to db

maximum.capacity 0 (unlimited) Max number of events in the channel

sysprop.* DB Vendor specific properties

sysprop.user.home Home path to store embedded Derby database

Example for agent named agent_foo:

agent_foo.channels = jdbcChannel-1
agent_foo.channels.jdbcChannel-1.type = jdbc

Recoverable Memory Channel

Warning

The Recoverable Memory Channel is currently experimental and is not yet ready for production use. This
channel's properties are being documented here in advance of its completion.

Required properties are in bold.

Property
Name Default Description

type -- The component type name, needs to be
org.apache.flume.channel.recoverable.memory.RecoverableMemoryChannel

wal.dataDir ${user.home}/.flume/recoverable-memory-channel

wal.rollSize (0x04000000) Max size (in bytes) of a single file before we roll

wal.minRetentionPeriod300000 Min amount of time (in millis) to keep a log

wal.workerInterval60000 How often (in millis) the background worker checks for
old logs

Configuration

19

wal.maxLogsSize (0x20000000) Total amt (in bytes) of logs to keep, excluding the current
log

File Channel

Required properties are in bold.

Property Name Default Description

type -- The component type name, needs to be FILE.

checkpointDir ~/.flume/file-channel/checkpoint The directory where checkpoint file will be stored

dataDirs ~/.flume/file-channel/data The directory where log files will be stored

transactionCapacity 1000 The maximum size of transaction supported by the
channel

checkpointInterval 30000 Amount of time (in millis) between checkpoints

maxFileSize 2146435071 Max size (in bytes) of a single log file

capacity 1000000 Maximum capacity of the channel

keep-alive 3 Amount of time (in sec) to wait for a put operation

write-timeout 3 Amount of time (in sec) to wait for a write operation

Note

By default the File Channel uses paths for checkpoint and data directories that are within the user home as
specified above. As a result if you have more than one File Channel instances active within the agent, only one
will be able to lock the directories and cause the other channel initialization to fail. It is therefore necessary that
you provide explicit paths to all the configured channels, preferably on different disks.

Example for agent named agent_foo:

agent_foo.channels = fileChannel-1
agent_foo.channels.fileChannel-1.type = file
agent_foo.channels.fileChannel-1.checkpointDir = /mnt/flume/checkpoint
agent_foo.channels.fileChannel-1.dataDirs = /mnt/flume/data

Pseudo Transaction Channel

Warning

The Pseudo Transaction Channel is only for unit testing purposes and is NOT meant for production use.

Required properties are in bold.

Property
Name Default Description

type -- The component type name, needs to be
org.apache.flume.channel.PseudoTxnMemoryChannel

capacity 50 The max number of events stored in the channel

keep-alive 3 Timeout in seconds for adding or removing an event

Configuration

20

Custom Channel

A custom channel is your own implementation of the Channel interface. A custom channel's class and its
dependencies must be included in the agent's classpath when starting the Flume agent. The type of the custom
channel is its FQCN. Required properties are in bold.

Property
Name Default Description

type -- The component type name, needs to be a fully-qualified class name

Example for agent named agent_foo:

agent_foo.channels = customChannel-1
agent_foo.channels.customChannel-1.type = your.domain.YourClass

Flume Channel Selectors
If the type is not specified, then defaults to "replicating".

Replicating Channel Selector (default)

Required properties are in bold.

Property Name Default Description

selector.type replicating The component type name, needs to be replicating

Example for agent named agent_foo and it's source called source_foo:

agent_foo.sources = source_foo
agent_foo.channels = channel-1 channel-2 channel-3
agent_foo.source.source_foo.selector.type = replicating
agent_foo.source.source_foo.channels = channel-1 channel-2 channel-3

Multiplexing Channel Selector

Required properties are in bold.

Property Name Default Description

selector.type replicating The component type name, needs to be multiplexing

selector.header flume.selector.header

selector.default --

selector.mapping.* --

Example for agent named agent_foo and it's source called source_foo:

agent_foo.sources = source_foo
agent_foo.channels = channel-1 channel-2 channel-3 channel-4
agent_foo.sources.source_foo.selector.type = multiplexing
agent_foo.sources.source_foo.selector.header = state
agent_foo.sources.source_foo.selector.mapping.CZ = channel-1
agent_foo.sources.source_foo.selector.mapping.US = channel-2 channel-3
agent_foo.sources.source_foo.selector.default = channel-4

Custom Channel Selector

A custom channel selector is your own implementation of the ChannelSelector interface. A custom channel
selector's class and its dependencies must be included in the agent's classpath when starting the Flume agent. The
type of the custom channel selector is its FQCN.

Property Name Default Description

selector.type -- The component type name, needs to be your FQCN

Configuration

21

Example for agent named agent_foo and it's source called source_foo:

agent_foo.sources = source_foo
agent_foo.channels = channel-1
agent_foo.sources.source_foo.selector.type = your.namespace.YourClass

Flume Sink Processors
Sink groups allow users to group multiple sinks into one entity. Sink processors can be used to provide load
balancing capabilities over all sinks inside the group or to achieve fail over from one sink to another in case of
temporal failure.

Required properties are in bold.

Property Name Default Description

processor.sinks -- Space separated list of sinks that are participating in the group

processor.type default The component type name, needs to be default, failover or
load_balance

Example for agent named agent_foo:

agent_foo.sinkgroups = group1
agent_foo.sinkgroups.group1.sinks = sink1 sink2
agent_foo.sinkgroups.group1.processor.type = load_balance

Default Sink Processor

Default sink processor accepts only a single sink. User is not forced to create processor (sink group) for single sinks.
Instead user can follow the source - channel - sink pattern that was explained above in this user guide.

Failover Sink Processor

Failover Sink Processor maintains a prioritized list of sinks, guaranteeing that so long as one is available events will
be processed (delivered).

The fail over mechanism works by relegating failed sinks to a pool where they are assigned a cool down period,
increasing with sequential failures before they are retried. Once a sink successfully sends an event it is restored to
the live pool.

To configure, set a sink groups processor to failover and set priorities for all individual sinks. All specified
priorities must be unique. Furthermore, upper limit to fail over time can be set (in milliseconds) using maxpenalty
property.

Required properties are in bold.

Property Name Default Description

processor.sinks -- Space separated list of sinks that are participating in the group

processor.type default The component type name, needs to be failover

processor.priority.<sinkName>-- <sinkName> must be one of the sink instances associated with the
current sink group

processor.maxpenalty 30000 (in millis)

Example for agent named agent_foo:

agent_foo.sinkgroups = group1
agent_foo.sinkgroups.group1.sinks = sink1 sink2
agent_foo.sinkgroups.group1.processor.type = failover
agent_foo.sinkgroups.group1.processor.priority.sink1 = 5
agent_foo.sinkgroups.group1.processor.priority.sink2 = 10
agent_foo.sinkgroups.group1.processor.maxpenalty = 10000

Configuration

22

Load balancing Sink Processor

Load balancing sink processor provides the ability to load-balance flow over multiple sinks. It maintains an indexed
list of active sinks on which the load must be distributed. Implementation supports distributing load using either via
ROUND_ROBIN or via RANDOM selection mechanism. The choice of selection mechanism defaults to ROUND_ROBIN
type, but can be overridden via configuration. Custom selection mechanisms are supported via custom classes that
inherits from LoadBalancingSelector.

When invoked, this selector picks the next sink using its configured selection mechanism and invokes it. In case the
selected sink fails to deliver the event, the processor picks the next available sink via its configured selection
mechanism. This implementation does not blacklist the failing sink and instead continues to optimistically attempt
every available sink. If all sinks invocations result in failure, the selector propagates the failure to the sink runner.

Required properties are in bold.

Property Name Default Description

processor.sinks -- Space separated list of sinks that are participating in the group

processor.type default The component type name, needs to be load_balance

processor.selector ROUND_ROBIN Selection mechanism. Must be either ROUND_ROBIN, RANDOM or
custom FQDN to class that inherits from
LoadBalancingSelector

Example for agent named agent_foo:

agent_foo.sinkgroups = group1
agent_foo.sinkgroups.group1.sinks = sink1 sink2
agent_foo.sinkgroups.group1.processor.type = load_balance
agent_foo.sinkgroups.group1.processor.selector = random

Custom Sink Processor

Custom sink processors are not supported at the moment.

Flume Interceptors
Flume has the capability to modify/drop events in-flight. This is done with the help of interceptors. Interceptors are
classes that implement org.apache.flume.interceptor.Interceptor interface. An interceptor can modify
or even drop events based on any criteria chosen by the developer of the interceptor. Flume supports chaining of
interceptors. This is made possible through by specifying the list of interceptor builder class names in the
configuration. Interceptors are specified as a whitespace separated list in the source configuration. The order in
which the interceptors are specified is the order in which they are invoked. The list of events returned by one
interceptor is passed to the next interceptor in the chain. Interceptors can modify or drop events. If an interceptor
needs to drop events, it just does not return that event in the list that it returns. If it is to drop all events, then it simply
returns an empty list. Interceptors are named components, here is an example of how they are created through
configuration:

agent_foo.sources = source_foo
agent_foo.channels = channel-1
agent_foo.sources.source_foo.interceptors = a b
agent_foo.sources.source_foo.interceptors.a.type = org.apache.flume.interceptor.HostInterceptor$Builder
agent_foo.sources.source_foo.interceptors.a.preserveExisting = false
agent_foo.sources.source_foo.interceptors.a.hostHeader = hostname
agent_foo.sources.source_foo.interceptors.b.type = org.apache.flume.interceptor.TimestampInterceptor$Builder

Note that the interceptor builders are passed to the type config parameter. The interceptors are themselves
configurable and can be passed configuration values just like they are passed to any other configurable component.
In the above example, events are passed to the HostInterceptor first and the events returned by the HostInterceptor
are then passed along to the TimestampInterceptor.

Configuration

23

Timestamp Interceptor

This interceptor inserts into the event headers, the time in millis at which it processes the event. This interceptor
inserts a header with key timestamp whose value is the relevant timestamp. This interceptor can preserve an
existing timestamp if it is already present in the configuration.

Property Name Default Description

type -- The component type name, has to be TIMESTAMP

preserveExisting false If the timestamp already exists, should it be preserved - true or false

Host Interceptor

This interceptor inserts the hostname or IP address of the host that this agent is running on. It inserts a header with
key host or a configured key whose value is the hostname or IP address of the host, based on configuration.

Property Name Default Description

type -- The component type name, has to be HOST

preserveExisting false If the host header already exists, should it be preserved - true or false

useIP true Use the IP Address if true, else use hostname.

hostHeader host The header key to be used.

In the example above, the key used in the event headers is "hostname"

Flume Properties

Property Name Default Description

flume.called.from.service -- If this property is specified then the Flume agent will continue polling for the
config file even if the config file is not found at the expected location.
Otherwise, the Flume agent will terminate if the config doesn't exist at the
expected location. No property value is needed when setting this property
(eg, just specifying -Dflume.called.from.service is enough)

Property: flume.called.from.service

Flume periodically polls, every 30 seconds, for changes to the specified config file. A Flume agent loads a new
configuration from the config file if either an existing file is polled for the first time, or if an existing file's modification
date has changed since the last time it was polled. Renaming or moving a file does not change its modification time.
When a Flume agent polls a non-existent file then one of two things happens: 1. When the agent polls a
non-existent config file for the first time, then the agent behaves according to the flume.called.from.service property.
If the property is set, then the agent will continue polling (always at the same period -- every 30 seconds). If the
property is not set, then the agent immediately terminates. ...OR... 2. When the agent polls a non-existent config file
and this is not the first time the file is polled, then the agent makes no config changes for this polling period. The
agent continues polling rather than terminating.

Log4J Appender
Appends Log4j events to a flume agent's avro source. A client using this appender must have the flume-ng-sdk in
the classpath (eg, flume-ng-sdk-1.2.0.jar). Required properties are in bold.

Property
Name Default Description

Hostname -- The hostname on which a remote Flume agent is running with an avro source.

Port -- The port at which the remote Flume agent's avro source is listening.

Sample log4j.properties file:

Log4J Appender

24

#...
log4j.appender.flume = org.apache.flume.clients.log4jappender.Log4jAppender
log4j.appender.flume.Hostname = example.com
log4j.appender.flume.Port = 41414

configure a class's logger to output to the flume appender
log4j.logger.org.example.MyClass = DEBUG,flume
#...

Security
The HDFS sink supports Kerberos authentication if the underlying HDFS is running in secure mode. Please refer to
the HDFS Sink section for configuring the HDFS sink Kerberos-related options.

Monitoring
TBD

Troubleshooting

Handling agent failures
If the Flume agent goes down then the all the flows hosted on that agent are aborted. Once the agent is restarted,
then flow will resume. The flow using jdbc or other stable channel will resume processing events where it left off. If
the agent can't be restarted on the same, then there an option to migrate the database to another hardware and
setup a new Flume agent that can resume processing the events saved in the db. The database HA futures can be
leveraged to move the Flume agent to another host.

Compatibility

HDFS

Currently Flume supports HDFS 0.20.2 and 0.23.

AVRO

TBD

Additional version requirements

TBD

Tracing
TBD

More Sample Configs
TBD

Component Summary

Component Interface Type Implementation Class

org.apache.flume.Channel MEMORY org.apache.flume.channel.MemoryChannel

Security

25

org.apache.flume.Channel JDBC org.apache.flume.channel.jdbc.JdbcChannel

org.apache.flume.Channel -- org.apache.flume.channel.recoverable.memory.RecoverableMemoryChannel

org.apache.flume.Channel FILE org.apache.flume.channel.file.FileChannel

org.apache.flume.Channel -- org.apache.flume.channel.PseudoTxnMemoryChannel

org.apache.flume.Channel -- org.example.MyChannel

org.apache.flume.Source AVRO

org.apache.flume.Source NETCAT

org.apache.flume.Source SEQ

org.apache.flume.Source EXEC

org.apache.flume.Source SYSLOGTCP

org.apache.flume.Source SYSLOGUDP

org.apache.flume.Source -- org.apache.flume.source.avroLegacy.AvroLegacySource

org.apache.flume.Source -- org.apache.flume.source.thriftLegacy.ThriftLegacySource

org.apache.flume.Source -- org.example.MySource

org.apache.flume.Sink NULL org.apache.flume.sink.NullSink

org.apache.flume.Sink LOGGER org.apache.flume.sink.LoggerSink

org.apache.flume.Sink AVRO org.apache.flume.sink.AvroSink

org.apache.flume.Sink HDFS org.apache.flume.sink.hdfs.HDFSEventSink

org.apache.flume.Sink -- org.apache.flume.sink.hbase.HBaseSink

org.apache.flume.Sink -- org.apache.flume.sink.hbase.AsyncHBaseSink

org.apache.flume.Sink FILE_ROLL org.apache.flume.sink.RollingFileSink

org.apache.flume.Sink IRC org.apache.flume.sink.irc.IRCSink

org.apache.flume.Sink -- org.example.MySink

org.apache.flume.ChannelSelectorREPLICATING org.apache.flume.channel.ReplicatingChannelSelector

org.apache.flume.ChannelSelectorMULTIPLEXING org.apache.flume.channel.MultiplexingChannelSelector

org.apache.flume.ChannelSelector-- org.example.MyChannelSelector

org.apache.flume.SinkProcessorDEFAULT org.apache.flume.sink.DefaultSinkProcessor

org.apache.flume.SinkProcessorFAILOVER org.apache.flume.sink.FailoverSinkProcessor

org.apache.flume.SinkProcessorLOAD_BALANCEorg.apache.flume.sink.LoadBalancingSinkProcessor

Security

26

	Flume 1.2.0 User Guide
	Introduction
	Overview
	System Requirements
	Architecture
	Data flow model
	Complex flows
	Reliability
	Recoverability

	Setup
	Setting up an agent
	Configuring individual components
	Wiring the pieces together
	Starting an agent
	A simple example

	Data ingestion
	RPC
	Executing commands
	Network streams

	Setting multi-agent flow
	Consolidation
	Multiplexing the flow

	Configuration
	Defining the flow
	Configuring individual components
	Adding multiple flows in an agent
	Configuring a multi agent flow
	Fan out flow
	Flume Sources
	Avro Source
	Exec Source
	NetCat Source
	Sequence Generator Source
	Syslog Sources
	Syslog TCP Source
	Syslog UDP Source

	Legacy Sources
	Avro Legacy Source
	Thrift Legacy Source

	Custom Source

	Flume Sinks
	HDFS Sink
	Logger Sink
	Avro Sink
	IRC Sink
	File Roll Sink
	Null Sink
	HBaseSinks
	HBaseSink
	AsyncHBaseSink

	Custom Sink

	Flume Channels
	Memory Channel
	JDBC Channel
	Recoverable Memory Channel
	File Channel
	Pseudo Transaction Channel
	Custom Channel

	Flume Channel Selectors
	Replicating Channel Selector (default)
	Multiplexing Channel Selector
	Custom Channel Selector

	Flume Sink Processors
	Default Sink Processor
	Failover Sink Processor
	Load balancing Sink Processor
	Custom Sink Processor

	Flume Interceptors
	Timestamp Interceptor
	Host Interceptor

	Flume Properties
	Property: flume.called.from.service

	Log4J Appender
	Security
	Monitoring
	Troubleshooting
	Handling agent failures
	Compatibility
	HDFS
	AVRO
	Additional version requirements

	Tracing
	More Sample Configs

	Component Summary

